
CS106B Handout #20
Winter 07-08 February 4, 2008

Section Handout #4

Problem 1: Filling a Region
Most drawing programs for personal computers make it possible to fill an enclosed
region on the screen with a solid color. Typically, you invoke this operation by selecting
a paint-bucket tool and then clicking the mouse, with the cursor somewhere in your
drawing. When you do, the paint spreads to every part of the picture it can reach without
going through a line.

For example, suppose you have just drawn the following picture of a house:

If you select the paint bucket and click inside the door, the drawing program fills the area
bounded by the door frame as shown at the left side of the following diagram. If you
instead click somewhere on the front wall of the house, the program fills the entire wall
space except for the windows and doors, as shown on the right:

In order to understand how this process works, it is important to understand that the
screen of the computer is actually broken down into an array of tiny dots called pixels.
On a monochrome display, pixels can be either white or black. The paint-fill operation

consists of painting black the starting pixel (i.e., the pixel you click while using the paint-
bucket tool) along with any pixels connected to that starting point by an unbroken chain
of white pixels. Thus, the patterns of pixels on the screen representing the preceding two
diagrams would look as shown below:

Write a program that simulates the operation of the paint-bucket tool. To simplify the
problem, assume that you have access to the enumerated type

enum pixelStateT { White, Black };

The type pointT is defined as follows:

struct pointT {
 int row, col;
};

A Grid<pixelStateT> will be used to represent the screen.

Your task in this problem is therefore to write a function

void FillRegion(pointT pt, Grid<pixelStateT> &screen);

that fills black into all white pixels reachable from the point pt.

Problem 2: Shortest Path Through a Maze
For the second assignment, you generated and solve perfect mazes. However, not all
mazes are perfect. In a perfect maze there is exactly one path from each point to each
other point. However, in many mazes, there are multiple paths. For example, the
diagrams below show three solutions for the same maze:

length = 13 length = 15 length = 13

None of these solutions, however, is optimal. The shortest path through the maze has a
path length of 11:

As a starting point, begin by considering this general maze solution:

/*
* Function: SolveMaze
* Usage: if (SolveMaze(pt)) . . .
* –––––––––––––––––––––––––––––––
* This function attempts to generate a solution to the current
* maze from point pt. SolveMaze returns true if the maze has
* a solution and false otherwise. The implementation uses
* recursion to solve the sub-mazes that result from marking the
* current square and moving one step along each open passage.
*/
bool SolveMaze(pointT pt)
{
 if (OutsideMaze(pt))
 return true;
 if (IsMarked(pt))
 return false;
 MarkSquare(pt);
 for (directionT dir = North; dir <= West; dir=directionT(dir + 1))
 {
 if (!WallExists(pt, dir) && SolveMaze(AdjacentPoint(pt, dir)))
 {
 return true;
 }
 }

 UnmarkSquare(pt);
 return false;
}

Write a function

int ShortestPathLength(pointT pt);

that returns the length of the shortest path in the maze from the specified position to any
exit. If there is no solution to the maze, ShortestPathLength should return the constant
NoSolution, which is defined to have a value larger than the maximum permissible path
length, as follows:

static const int NoSolution = 10000;

Note that the for this problem you will use the Maze library on p.6-6 of the reader, rather
than the Maze library from Assignment 2.

Problem 3: Pointers
 Suppose you were writing a database for Stanford' library sytem. You have a bookT
object which contains all of the information about a book. It looks like this:

struct bookT {
string author;
string title;
string publisher
(etc.)

};

You want people to be able to look up books using different features, such as author or
title. To do this, you've created several maps:

Map<Vector<bookT> > byAuthor;
Map<Vector<bookT> > byTitle;
Map<Vector<bookT> > byPublisher;
...

Draw what this data structure looks like in memory. What happens if you discover that
one of the books has the wrong author listed? What needs to be updated? How might you
modify your data structure to help resolve this issue? Draw what this new data structure
looks like in memory.

Problem 4: Linked List Warmup
Write the following linked list functions. Provide both iterative and a recursive
forumlations. Cell is defined as follows:

struct Cell {
Cell *next;
int value;

};

a) Write a function ConvertToList which takes in a Vector of ints and converts it into a
linked list. Assume the Vector has at least one element in it.

Cell * ConvertToList(Vector<int> vector)

b) Write a function which sums the values of a linked list.

int SumList(Cell *list)

Problem 5: Linked List Trace
You are given the following function below:

void PopRocks(Cell * & mikey)
{
 Cell *ptr;

 for (ptr = mikey; ptr->next != NULL; ptr = ptr->next)
 {
 /* Note: loop body intentionally left empty */
 }
 ptr->next = mikey;
 ptr = ptr->next;
 mikey = mikey->next;
 ptr->next = NULL;
}

Given a pointer to a linked list, what does the code do to the list? You can assume that the
list is properly NULL terminated. Given the following linked lists, if we were to call the
function passing in a pointer to the first item in the list, what would the lists look like
afterwards?

"15" -> "30" -> "45" -> "60"

"s" -> "t" -> "a" -> "r"

"Go" -> "hang" -> "a" -> "salami," -> "I'm" -> "a" -> "lasagna" ->
"hog!"

Problem 6: Append
Write a function that given two lists will append the second list onto the first. For
example, given the first list (1 4 6) and the second list (3 19 2), the function would
destructively modify the first list to contain (1 4 6 3 19 2). It is easiest to write this
function recursively. Be sure to handle the case when one or both lists are empty.\

