Please note that some of the resources used in this assignment require
a Stanford Network Account and therefore may not be accessible.

CS5107 Handout 09
Spring 2008 April 9, 2008

Assignment 2: Six Degrees of Kevin Bacon

Craving a little Oscar trivia? Try your hand in an Internet parlor game about Kevin Bacon’s
acting career. He’s never been nominated for an Oscar, but he’s certainly achieved
immortality—based on the premise that he is the hub of the entertainment universe. Mike
Ginelli, Craig Fass and Brian Turtle invented the game while students at Albright College in
1993, and their Bacon bit spread rapidly after convincing then TV talk-show host Jon Stewart
to demonstrate the game to all those who tuned in. From these humble beginnings, a Web
site was built, a book was published and a nationwide cult-fad was born.

When you think about Hollywood heavyweights, you don’t immediately think of Kevin
Bacon. But his career spans almost 20 years through films such as Flatliners, The Air Up There,
Footloose, The River Wild, [FK and Animal House. So brush up on your Bacon lore. To play an
Internet version, visit http://oracleofbacon.org/.

Due: Thursday, April 17" at 11:59 p.m.
How to Play

The game takes the form of a trivia challenge. Propose two names, and your

friend / opponent has to come up with a sequence of movies and mutual co-stars
connecting the two. In this case, your opponent takes on the form of your computer,
and the computer is exceptionally good.

Jack Nicholson and Meryl Streep? That's easy:

Actor or actress [or <enter> to quit]: Jack Nicholson
Another actor or actress [or <enter> to quit]: Meryl Streep

Jack Nicholson was in "Heartburn" (1986) with Meryl Streep.

Mary Tyler Moore and Red Buttons? Hmmm... not so obvious:

Actor or actress [or <enter> to quit]: Mary Tyler Moore
Another actor or actress [or <enter> to quit]: Red Buttons

Mary Tyler Moore was in "Change of Habit" (1969) with Regis Toomey.
Regis Toomey was in "C.H.O0.M.P.S." (1979) with Red Buttons.

Barry Manilow and Lou Rawls?

Actor or actress [or <enter> to quit]: Barry Manilow
Another actor or actress [or <enter> to quit]: Lou Rawls

Barry Manilow was in "Bitter Jester" (2003) with Dom Irrera.
Dom Irrera was in "Man Is Mostly Water, A" (2000) with Lou Rawls.

It's the people you’ve never heard of that are far away from each other:

Actor or actress [or <enter> to quit]: Carol Eby
Another actor or actress [or <enter> to quit]: Debra Muubu

Carol Eby was in "Bottega dell'orefice, La" (1988) with Burt Lancaster.
Burt Lancaster was in "Scalphunters, The" (1968) with Tony Epper (I).
Tony Epper (I) was in "Alien from L.A." (1988) with Debra Muubu.

Is it true? Your buffoon of a lecturer has a Bacon number of 3?

Actor or actress [or <enter> to quit]: Jerry Cain
Another actor or actress [or <enter> to quit]: Kevin Bacon

Jerry Cain was in "No Rules" (2005) with Dian Bachar.
Dian Bachar was in "Rocky & Bullwinkle" (2000) with Robert De Niro.
Robert De Niro was in "Sleepers" (1996) with Kevin Bacon.

I have no idea who this particular Jerry Cain is. Maybe you do.

Overview

There are two major components to this assignment:

* You need to provide the implementation for an imdb class', which allows you to
quickly look up all of the films an actor or actress has appeared in and all of the
people starring in any given film. We could layer our imdb class over two STL
maps—one mapping people to movies and another mapping movies to
people—but that would require we read in several megabytes of data from flat
text files. That type of configuration takes several minutes, and it’s the opposite of
fun if you have to sit that long before you play. Instead, you'll tap your
sophisticated understanding of memory and data representation in order to look
up movie and actor information very, very quickly. This is the meatier part of the
assignment, and I'll get to it in a moment.

* You also need to implement a breadth-first search algorithm that consults your
super-clever imdb class to find the shortest path connecting any two
actor/actresses. If the search goes on for so long that you can tell it'll be of length
7 or more, then you can be reasonably confident (and pretend that you know for
sure that) there’s no path connecting them. This part of the assignment is more
CS106B-like, and it’s a chance to get a little more experience with the STL and to
see a legitimate scenario where a complex program benefits from two types
paradigms: high-level C++ (with its templates and its object orientation) and low-
level C (with its exposed memory and its procedural orientation.)

' imdb is short for Internet Movie Database; our name is a gesture to the company that provides all of the
data for the hundreds of thousands of movies and movie stars.

Task I: The imdb class

First off, I want to you complete the implementation of the imab class. Here’s the interface:

struct film {
string title;
int year;

}i

class imdb {
public:
imdb(const string& directory);
bool getCredits(const string& player, vector<film>& films) const;
bool getCast(const film& movie, vector<string>& players) const;
~imdb();

private:
const void *actorFile;
const void *movieFile;

}i

The constructor and destructor have already been implemented for you, because the
manner in which I initialize the actorFile and movieFile fields to address the raw
data representations uses some nontrivial UNIX. They each take O(1) time to run,
because typically you want constructors and destructors to be as lightweight as
possible. You need to implement the getcredits and getcast methods by manually
crawling over these raw data representations in order to produce vectors of films and
actor names. When properly implemented, they provide lightning-speed access to a
gargantuan amount of information.

Understand up front that you are implementing these two methods to crawl over two
arrays of bytes in order to synthesize data structures for the client. What follows below
is a description of how the memory is laid out. You aren’t responsible for creating the
data files in any way; you're just responsible for understanding how everything is
encoded so that you can re-hydrate information from byte-level representations.

The Raw Data Files

The actorFile and movieFile fields each address gigantic blocks of memory. They
are each configured to point to mutually referent databases, and the format of each is
described below. The imab file constructor sets these pointers up for you, so you can
proceed as if everything is set up for getcast/credits to just run.

For the purposes of illustration, let’s assume that Hollywood has produced a mere
three movies, and that they’ve always rotated through the same three actors whenever
the time came to cast their three films. Let’s pretend those three films are as follows:

Clerks, released in 1993, starring Cher and Liberace.
Moonstruck, released in 1988, starring Cher, Liberace, and Madonna.

actorFile | @ 3 | Cher’sinfo Liberace’s info Madonna’s info

movieFile | ©

movieFile | ©

Zoolander, released in 1999, starring Liberace and Madonna.
Remember, we’re pretending.
If the imdb were configured to store the above information, you could imagine its

actorFile and movieFile fields being initialized (by the constructor I already wrote
for you) as follows:

3 Clerks’s info Moonstruck’s info Zoolander’s info

However, each of the records for the actors and the movies will be of variable size.
Some movie titles are longer than others; some films feature 75 actors, while others star
only a handful. Some people have prolific careers, while several people are one-hit
wonders. Defining a struct or class to overlay the blocks of data would be a fine
idea, except that doing so would constrain all records to be the same size. We don’t
want that, because we’d be wasting a good chunk of memory when storing
information on actors who appeared in just one or two films (and for films that feature
just a handful of actors.)

However, by allowing the individual records to be of variable size, we lose our ability
to binary search a sorted array of records. The number of actors is well over 300,000;
the number of movies is some 124,000, so linear search would be slow. All of the actors
and movies are sorted by name (and then by year if two movies have the same name),
so binary search is still within our reach. The strong desire to search quickly motivated
my decision to format the data files like this:

-
1
1
! r
1 1 1
1 1 1
1 1
actorFile | O 3 Q| O | ® | Chersinfo Liberace’s info Madonna’s info

3 O O Q Clerks’s info Moonstruck’s info Zoolander’s info
1 1 1
i i
i L

Spliced in between the number of records and the records themselves is an array of
integer offsets. They’re drawn as pointers, but they really aren’t stored as pointers. We
want the data images to be relocatable—that is, we want the information stored in the

5

data images pointed to by actorFile and movieFile to be useful, regardless of what
addresses get stored there. By storing integer offsets, we can manually compute the
location of Cher’s record, Madonna’'s record, or Clerk’s record, etc, by adding the
corresponding offsets to whatever actorFile or movieFile happens to be. A more
accurate picture of what gets stored (and this is really what the file format is) is
presented here.

actorFile | ©

16

32

56

Cher’s info

Liberace’s info

Madonna’s info

movieFile |

16

36

64

Clerks’s info

Moonstruck’s info

Zoolander’s info

Because the numbers are what they are, we would expect Cher’s 16-byte record to sit
16 bytes from the front of actorFile, Liberace’s 24-byte record to sit 32 bytes within
the actorFile image, and so forth. Looking for Moonstruck? Its 28-byte record can
be found 36 bytes ahead of whatever address is stored in movieFile. Note that the
actual offsets tell me where records are relative to the base address, and the deltas
between offsets tell me how large the actual records are.

Because all of the offsets are stored as four byte integers, and because they are in a
sense sorted if the records they reference are sorted, we can use binary search. Woo!

To summarize:

* actorFile points to a large mass of memory packing all of the information
about all of the actors into one big blob. The first four bytes store the number of
actors (as an int); the next four bytes store the offset to the zeroth actor, the
next four bytes store the offset to the first actor, and so forth. The last offset is
followed by the zeroth record, then the first record, and so forth. The records,
even though variable in length, are sorted by name.

* movieFile also points to a large mass of memory, but this one packs the
information about all films ever made. The first four bytes store the number of
movies (again, as an int); the next *(int *)movieFile * 4 bytes store all of
the int offsets, and then everything beyond the offsets is real movie data. The
movies are sorted by title, and those sharing the same title are sorted by year.

* The above description above generalizes to files with 300,000 actors and 100,000
movies. The rules are the same.

The Actor Record

The actor record is a packed set of bytes collecting information about an actor and the
movies he’s appeared in. We don’t use a struct or a class to overlay the memory
associated with an actor, because doing so would constrain the record size to be

6

constant for all actors. Instead, we lay out the relevant information in a series of bytes,
the number of which depends on the length of the actor’s name and the number of
films he’s appeared in. Here’s what gets manually placed within each entry:

1. The name of the actor is laid out character by character, as a normal null-
terminated C-string. If the length of the actor’s name is even, then the string is
padded with an extra '\0' so that the total number of bytes dedicated to the
name is always an even number. The information that follows the name is most
easily interpreted as a short integer, and virtually all hardware constrains any
address manipulated as a short * to be even.

2. The number of movies in which the actor has appeared, expressed as a two-byte
short. (Some people have been in more than 255 movies, so a single byte just
isn’t enough.) If the number of bytes dedicated to the actor’s name (always
even) and the short (always 2) isn’t a multiple of four, then two additional '\0"s
appear after the two bytes storing the number of movies. This padding is
conditionally done so that the 4-byte integers than follow sit at addresses that are
multiples of four.

3. An array of offsets into the movieFile image, where each offset identifies one
of the actor’s films. .

Here’s what Cher’s record would look like: 7

~ " space for offsets into the
N e

-7 //// \\\ =~ - Because Cher starred in
six bytes storing 'C’, 'h’, 'e’, // \ T~ - Clerks and Moonstruck, the
'r’, '\0", '\0’, which is the //// \\ RN four-byte ints 16 and 36
~ C-string "Cher”, followed 7/ . would be stored side by side

/) two bytes storing the short integer

by an extra zero. The extra for a total of eight bytes.

Notice that Clerks’s record
is 16 bytes from the base

2. Because Cher has starred in two
zero was needed here to

. movies, the number 2 would be stored
make the entire

here as a two-byte figure. Because

representation even in address of movieFile,

the total number of bytes occupied

length. i
thus far is a multiple of four, we don’t and that Moinstruck is 36
need to pad with any additional zero bytes from the base address.
characters.
The Movie Record

The movie record is only slightly more complicated. The information that needs to be
compressed is as follows:

1. The title of the movie, terminated by a '\o"' so the character array behaves as a
normal C-string.

7

2. The year the film was released, expressed as a single byte. This byte stores the
year — 1900. Since Hollywood is less than 2° years old, it was fine to just store the
year as a delta from 1900. If the total number of bytes used to encode the name
and year of the movie is odd, then an extra '\0' sits in between the one-byte year
and the data that follows.

3. A two-byte short storing the number of actors appearing in the film, padded
with two additional bytes of zeroes if needed.

4. An array of four-byte integer offsets, where each integer offset identifies one of
the actors in the actorFile. The number of offsets here is, of course, equal to
the short integer read during step 3.

One major gotcha: Some movies share the same title even though they are different. (The
Manchurian Candidate, for instance, was first released in 1962, and then remade in 2004.
They're two different films with two different casts.) If you look in the imdb-utils.h
file, you'll see that the £ilm struct provides operator< and operator== methods. That
means that two £ilms know how to compare themselves to each other using infix ==
and < (though not using t=, >, >=, or <=). You can just rely on the < and == to compare
two film records. In fact, you should, because the movies in the moviepata binary
image are sorted to respect film: :operator<.

It's best to work on the implementation of the imab class in isolation, not worrying
about the details of the search algorithm you’ll eventually need to write. I've provided
a test harness to exercise the imdb all by itself, and that code sits in imdb-test.cc.
The make system generates an test application called imdb-test which you can use to
verify that your imdb implementation is solid. I provide sample versions of this
imdb-test thing for both Solaris and for Linux, so you can run your version and my
version side by side and make sure they match character for character.

Task II: Implementing Search

You're back in C++ mode. At this point, I'm assuming your imdb class just works, and
the fact that there’s some exceedingly shrewd pointer gymnastics going on in the
imdb. cc file is completely disguised by the simple imdb interface. Use the services of
your imdb and my path to implement a breadth-first search for the shortest possible
path. Leverage off the STL containers as much as possible to get this done. Here are
the STL classes I used in my solution:

* vector<T>: there’s no escaping this one, because the imdb requires we pull
films and actors out of the binary images as vectors.

* 1list<T>: The 1ist is a doubly-linked list that provides O(1) push_back, front,
and pop_£front operations. There’s also a queue template, and you can use that
if you want, but I'm so bugged that the STL queue calls its methods push and
pop instead of enqueue and dequeue that I boycotted it and used the 1ist
instead.

8

* set<T>: [used two sets to keep track of previously used actors and films. If
you're implementing a breadth-first search and you encounter a movie or actor
that you’ve seen before, there’s no reason to use it/him/her a second time. You
shouldn’t need to use anything other than set<T>::insert.

The dinkumware web site provide a clear, nicely formatted presentation of the list,
vector, and set templates. You don’t need to read up on every method—just the ones
you know have to exist in order for them to be useful.

Here’s the general algorithm I used for my own generateshortestPath function:

list<path> partialPaths; // functions as a queue
set<string> previouslySeenActors;
set<film> previouslySeenFilms;

create a partial path around the start actor;
add this partial path to the queue of partial paths;
while queue isn’t empty and its front element is of length 5 or less
pull off front path (involves both front and pop front)
look up last actor’s movies
for each movie in his/her list of movies you’ve not seen before
add movie to the set of previously seen movies
look up movie’s cast
for each cast member you’ve not seen before
add cast member to set of those previously seen
clone the partial path
add the movie/costar connection to the clone
if you notice the costar is your target, then print the path and return
otherwise add this new partial path to the end of the queue

if the while loop ends, print that you didn’t find a path

There are many clever optimizations that can be made, and I go through a few of them
below. But you're only expected to implement a search that’s consistent with the
algorithm above.

How To Proceed

Seven days is a good stretch of time, but you have a lot to do. If you aren’t proactive in
making the development process as easy as possible, you're going to end up spending
twice as much time as everyone else. Here’s the best advice I can give you:

* Compile the starting files to see how they work. Read all of the provided interface
files to understand not only what they do, but also how they will contribute to the
final product. Work on the imdb class first, test it using the imdb-test.cc file, and
work to match my sample application’s output exactly. Only after you've nailed the
imdb implementation should be move on to the search.

9

* Development incrementally. Divide the process up to include several intermediate
milestones (and when I say several, I mean on the order of 20 or 30.) Let your code
base evolve into the program it needs to be.

* Compile and test often. Never write more than a few new lines of code without
compiling and testing to see that your changes work as intended. In general, I
never write more than 10 — 15 lines without compiling and executing to see how my
code changed. If you write 100 lines of code, I guarantee you’ll have more compiler
errors than you can count on both hands. You don’t want that. You just don't.

Getting started

Create a local working directory in your leland space where you'd like to consolidate all
of your Assignment 2 files. Then type the following commands:

> cp -r /usr/class/csl07/assignments/assn-2-six-degrees/ . (note the dot)
> cd assn-2-six-degrees

All of the Assignment 2 starter files will be copied into the current directory. In
particular, you will see a Makefile, several header files, and several source files—all of
which will contribute to your program development efforts. Here's a list of the files that
pertain to each task:

Task I
Here’s the subset of all the files that pertain to just the first of the two tasks:

imdb-utils.h The definition of the film struct, and an inlined function that
finds the data files for you. You shouldn’t need to change this
file.

imdb.h The interface for the imab class. You shouldn’t change the
public interface of this file, though you're free to change the
private section if it makes sense to.

imdb.cc The implementation of the imab class constructor, destructor,
and methods. This is where your code for getcast and
getCredits belongs.

imdb-test.cc The unit test code we’ve provided to help you exercise your
imdb. You shouldn’t have to change this file. We’ve provided
sample applications called imdb-test-solaris and
imdb-test-linux so you know what you’re working toward.

Makefile By typing make imdb-test, you'll compile just the files
needed to build imdb-test. You shouldn’t need to change the
Makefile at all.

10

Task II

Everything from Task I (except imdb-test.cc) contributes to the overall six-degrees
application. Type make six-degrees to build the six-degrees executable without
building the imdb-test application (or you can just type make and build both.) There are
sample six-degrees-solaris and six-degrees-linux applications for you to play
with. In addition to the files used for Task I, there are these:

six-degrees.cc The file where most if not all of your Task II changes should be
made.

path.h The definition of the path class, which is a custom class useful
for building paths between two actors. You're free to add
methods if you think it’s sensible to do so.

path.cc The implementation of the path class. Again, you can add
stuff here if you think it makes sense to.

Speeding It Up
You're more than encouraged (though not required) to optimize the search to find

paths—particularly those between actors who are far apart from one another—much
more quickly. Consider how neat it'd be if the application:

e starts the search from the actor with the smaller number of movies, and
reversing the final path if need be. You'll note that the path class provides a nice
little reverse method for just this. In fact, your sample application does this
(though you don’t need to if you don’t want to.)

* caches the results of all imdb method calls using local maps—one of type
map<string, vector<film> >, and a second of type (can you guess?)
map<film, vector<string> >. Before going to the imdb, you can see
whether or not you’ve looked up the same actor or movie on previous searches.
If you have, you can more quickly return the stored result without committing
to the more intense getCredits or getcast call.

* uses a bidirectional search from both actor endpoints, building larger and larger
search trees from each of them, and seeing if any of their branches touch. This is
a very effective way of focusing the search so that paths of length 4, 5, and 6 can
be more quickly discovered. Email me if you want some more details on this
one. This last optimization is substantial and can get you some extra credit if
done nicely.

Electronic submission

You'll submit this assignment and all subsequent programming assignments they way
you submitted RSG. Just type /usr/class/cs107/bin/submit and you can’t go
wrong.

