
CS107 Handout 16
Spring 2008 April 23, 2008

Computer Architecture: Take IV
Examples by Jerry, Nick, and Julie.

A simple function
The simple Add function takes two integers as parameters, computes their sum in a local
variable, and then returns that value.

static int Add(int one, int two)
{

int temp, sum;

sum = one + two;
return sum;

}

The activation record is 20 bytes total: 8 bytes for the parameter block, 4 bytes for the
return address, and 8 bytes for the local variables.

Add AR
(total size 20 bytes) type size offset

two int 4 16

one int 4 12

Saved PC address 4 8

temp int 4 4

 SP -> sum int 4 0

Doing the most straightforward translation (no concern for optimization), the generated
code for the body of Add will look like this:

SP = SP - 8 ; make space for local variables
R1 = M[SP + 12] ; load value of parameter one into R1
R2 = M[SP + 16] ; load value of parameter two into R2
R3 = R1 + R2 ; do addition
M[SP] = R3 ; store result in local variable sum
RV = M[SP] ; copy sum's value into RV register (return value)
SP = SP + 8 ; clean up space used for local variables
RET ; return to caller, pick up at saved address

You could change the C code to not bother with the local variables (temp isn't even
used, and sum isn't necessary), but in fact, a smart optimizing compiler can already
recognize they aren't needed and remove them for you. When a value is used only
temporarily, it is likely to exist only in a register and never be written to the stack at all:

2

; eliminate all local variables, no change to SP
R1 = M[SP + 4] ; load value of parameter one into R1
R2 = M[SP + 8] ; load value of parameter two into R2
RV = R1 + R2 ; compute sum directly into RV register
RET ; no need to clean up locals, there aren't any!

The Calling Function
What kind of code is generated to make a function call? The caller has responsibility for
making space for the parameters and assigning their values, along with saving the
return state and transferring control. The function Caller has no parameters, one local
integer, and calls the Add function from the previous example:

static void Caller(void)
{

int num = 10;

num = Add(num, 45);
 num = 100;
}

Caller AR
(total size 8 bytes) type size offset

Saved PC addres
s

4 4

 SP -> num int 4 0

Here is the code generated for the Caller function, note how it handles the call to Add.

SP = SP - 4 ; make space for local variable num

M[SP] = 10 ; assign local variable num constant value 10

R1 = M[SP] ; load up the value of num (before we change SP
; so we don't have to deal with changed offsets)

SP = SP - 8 ; push space for parameter block of Add's AR
M[SP + 4] = 45 ; initialize parameters in the activation record
M[SP] = R1

CALL <Add> ; the CALL instruction makes space on the stack
; for the return address, saves the PC value there
; and then assigns the PC to the address of the first
; instruction of the Add fn (which transfers control)

SP = SP + 8 ; when control returns here, pop the params off stack
M[SP] = RV ; read return value from RV and store in num

M[SP] = 100 ; assign num constant value 100

SP = SP + 4 ; clean up storage for locals
RET ; return, no value stored in RV since fn has no return

3

Although the caller makes space for parameters, it does not allocate space for the locals.
This is because as the outside caller, you don't know how much space is required for the
local variables of some other random function. For example, when calling strlen, how
can you tell how many bytes it needs for local variables? It is the job of the callee to
allocate that space. When Add starts executing, the first thing it does is push space onto
the stack for the locals, without initializing any values in that space (see code on previous
page).

A pointer parameter
Note that parameters in C are passed by value, so a copy of the contents are made on
the stack. Any changes made to the parameter in the context of the callee function are
lost when control returns to the caller. When we want to change a value within a called
function, we pass the address of the value and then the callee code dereferences the
pointer to access and change the data.

But be careful about what is by reference and what is by value! Note that the pointer
itself is still a normal parameter that is copied to the stack and changes to the pointer
inside the calling function will only affect the local copy. For example, think about why
you have to catch the return value from realloc. Why doesn't realloc just change
the pointer you passed as a parameter when it is necessary to move the data? Here's a
sketch of that scenario:

void main(void)
{

char *s = malloc(100);
my_realloc(s, 200);
// after return, s still holds same address as before

}

void my_realloc(void *ptr, int newSize)
{

ptr = malloc(newSize); // why isn't this enough to change the pointer?
}

main AR Saved PC address

s char *

my_realloc AR newSize int

ptr void *

Saved PC address

It's important to understand why assigning to ptr in the my_realloc function has no
effect on the local variable s back in main. To get this to work, we would need to pass
the pointer itself by reference into the function so that it can reach back to the local
variable and change its contents:

4

void main(void)
{

char *s = malloc(100);
my_realloc(&s, 200);

// after return, s now holds new address
}

void my_realloc(void **ptr, int newSize)
{

*ptr = malloc(newSize); // follow param back to change
}

A struct parameter
The Binky function takes a struct as a parameter and has a local struct declared on
the stack. What does the activation record look like for Binky? What code will be
generated to set the denominator fields in the parameter struct and local struct
variable?

struct fraction {
int numerator;
int denominator;

};

static void Binky(struct fraction param)
{

struct fraction local;

local.denominator = 1;
param.denominator = 2;

}

Binky AR
(total size 20 bytes) type size offset

param.den int 4 16

param.num int 4 12

Saved PC address 4 8

local.den int 4 4

 SP -> local.num int 4 0

SP = SP - 8 ; make space for local variable

M[SP + 4] = 1 ; set local.denominator = 1
M[SP + 16] = 2 ; set param.denominator = 2

SP = SP + 8 ; clean up locals
RET ; return to caller, no return value stored

5

The calling function
How does a struct get passed as a parameter? Like other parameters in C, it is passed
by value, so a copy is made on the stack. The function Caller has no parameters, a local
struct fraction, and calls Binky from the previous example:

static void Caller(void)
{

struct fraction actual;

Binky(actual);
}

Caller AR
(total size 12 bytes) type size offset

Saved PC addres
s

4 8

actual.denom int 4 4

 SP -> actual.num int 4 0

Here is the code generated in Caller to set up for the call to Binky. Note that
structs, like all C parameters, are passed by value. A complete copy of the struct is
made and copied to the stack.

SP = SP - 8 ; make space for local variable (left uninitialized)
R1 = M[SP] ; store the value of the two fields of the struct "actual"
R2 = M[SP + 4] ; (before we change the SP which will make things messy)

SP = SP - 8 ; push space for the parameter block of Binky's AR

M[SP + 4] = R2 ; initialize the parameter in the AR. This means
M[SP] = R1 ; copying both fields. For a small struct, it is possible

; to store the fields temporarily in register(s) and then
; copy to stack in steps. However, for larger structures,
; it will be necessarily to store the address of the
; structure in a register and then use a specialized
; copy function (something like memcpy) to copy its
; contents to the stack. Something similar is done when
; returning a struct as the return value.

Call <Binky>
SP = SP + 8 ; clean up parameters

SP = SP + 8 ; clean up locals

RET ; return to caller, no return value stored

Passing structs as parameters (or as return values) is usually quite expensive. A copy
can't easily be made if the struct is larger than a register. It is often preferred to pass
structures by address (even when you don't intend to modify them) to avoid this

6

expense. The const modifier can be used to show you don't intend the contents to be
modified.

A function with a local array
An example with an array declared locally. Note that all the memory for the array
elements is allocated as space on the stack when you use this type of declaration.

static void Apple(void)
{

int i;
short scores[4];

 scores[i] = 10;
}

Apple AR
(total size 16 bytes) type size offset

Return addr address 4 12

i int 4 8

scores[3] short 2 6

scores[2] short 2 4

scores[1] short 2 2

 SP -> scores[0] short 2 0

Here is the code for the Apple function, the most interesting part being the function
body which assigns the constant 10 to the ith member of the scores array:

SP = SP - 12 ; make space for locals (left uninitialized)

R1 = M[SP + 8] ; load value of i into R1
R2 = R1 * 2 ; multiply i by size of element (short = 2 bytes)
R3 = SP + R2 ; add offset to base address of scores array
M[R3] =.2 10 ; assign array element, copy only 2 bytes!

SP = SP + 12 ; clean up stack
RET ; return to caller

Looking at the above activation record, do you see why it is not possible to do
something like this?

 scores = (short *) malloc(sizeof(short) * 25);

How much more expensive would it be to allocate a 1000 member array instead
of just 4? How does this compare to using malloc to allocate an array?

7

A function with an array parameter
All arrays in C are passed by reference, thus Banana here will receive the base address
of the array as its first parameter.

static void Banana(short scores[], int n)
{
 scores[n] = 10;
}

Banana AR
(total size 12 bytes) type size offset

n int 4 8

scores short * 4 4

 SP -> Return addr address 4 0

Here is the code for the Banana function, which assigns the constant 10 to the nth
member of the scores array. Note how it is different (minutely but importantly) from
the similar code in the Apple function:

; no locals, so no need to make space
R1 = M[SP + 8] ; load n into R1
R2 = R1 * 2 ; multiply n by size of element (short = 2 bytes)
R3 = M[SP + 4] ; load base address of scores array
R4 = R3 + R2 ; add offset to base address
M[R4] =.2 10 ; assign array element, copy only 2 bytes!
RET

Notice that having just the base address of the array stored in our activation record is
different that having the array itself stored in the activation record. In this example, it
would be legal to reassign where scores points with this code:

scores = (short *) malloc(sizeof(short) * 25);

What does this line of code do? Does you see why this is legal here but wasn’t in the
previous example?

Also worth mentioning is that you can declare an array parameter with a lot of different
notation:

static void Banana(short scores[], int n)
static void Banana(short *scores, int n)
static void Banana(short scores[10], int n)

But all of these generate exactly the same code, have the same behavior, and the same
activation record. There is absolutely no difference in them, the notations by convention
indicate how the argument will be used in the function body.

8

There is one slightly obscure way to make a copy of certain arrays when passing them
as a parameter, do you see what it is?

Passing an array as a parameter
What if the previous Apple function made a call to Banana?

static void Apple(void)
{

int i;
short scores[4];

 Banana(scores, i);
}

Code for the Apple function, now with a call to Banana:

SP = SP - 12 ; make space for locals (left uninitialized)

R1 = M[SP + 8] ; load i into R1
R2 = SP ; load base address of scores array
SP = SP - 8 ; make space for params to Banana function
M[SP + 4] = R1 ; assign second param
M[SP] = R2 ; assign first param
CALL <Banana> ; jump to Banana function
SP = SP + 8 ; clean up parameter block from Banana

SP = SP + 12 ; clean up locals
RET

While this code is executing, the stack will look like this:

Return addr
i

Apple's AR scores[3]

scores[2]

scores[1]

scores[0]

Banana's AR n

scores

SP -> Return addr

9

Using a function pointer
When you pass a function pointer as a parameter, it is literally tracking the address of
the sequence of instructions for the named function. Setting up for the function call is the
same as for named function, the generated code uses the activation record as described
by the declared type of the function pointer. At the call instruction, control goes to the
passed address, rather than a specific named function. For example, this function
compares two unknown things via a function pointer and returns true or false based on
the returned result:

typedef int (*compareFn)(const void *, const void *);

static bool AreEqual(const void *a, const void *b, compareFn cmp)
{

if (cmp(a, b) == 0) // not the most compact way to write this
return true; // but simplest to generate code for

else
return false;

}

AreEqual AR
(total size 16 bytes) type size offset

cmp fn ptr 4 12

b void * 4 8

a void * 4 4

 SP -> Return addr address 4 0

Code for AreEqual showing how it sets up and calls a function via pointer:

; no locals, so no space created
R1 = M[SP + 8] ; load b into R1
R2 = M[SP + 4] ; load a into R2
R3 = M[SP + 12] ; load cmp into R3

SP = SP - 8 ; make space for params of the fn
M[SP + 4] = R1 ; assign second param
M[SP] = R2 ; assign first param

CALL R3 ; call to address stored in R3

SP = SP + 8 ; remove parameters when function returns
BNE RV, 0, PC + 12 ; if return value not zero jump to else
RV = 1 ; assign return value to true
RET ; return to caller
RV = 0 ; assign return value to false
RET ; return to caller

10

It is absolutely imperative that the function pointer passed to AreEqual matches the
prototype of a compareFn. What will happen if it doesn't? What will happen if a NULL
or an incorrect pointer is passed as the compare function?

Passing a function pointer as a parameter
Passing a function pointer as a parameter means taking the address of its compiled code
and assigning the parameter to hold that address, nothing too complicated, actually.

int CompareStrings(const void *a, const void *b)
{

return strcmp((char *)a, (char *)b);
}

static void Caller(void)
{

int same;
char *s, *t;

same = AreEqual(s, t, CompareStrings);
}

Caller AR
(total size 16 bytes) type size offset

Return addr address 4 12

same int 4 8

s char * 4 4

 SP -> t char * 4 0

Code for Caller showing how it sets up and calls a function passing a
function pointer:

SP = SP - 12 ; create space for locals (left uninitialized)
R1 = M[SP] ; load t into R1
R2 = M[SP + 4] ; load s into R2
R3 = <CompareStrings> ; load address of CompareStrings fn into R3

SP = SP - 12 ; make space for params of AreEqual
M[SP + 8] = R3 ; assign third param (the function pointer)
M[SP + 4] = R1 ; assign second param
M[SP] = R2 ; assign first param

CALL <AreEqual> ; call to AreEqual

SP = SP + 12 ; remove parameters when function returns
M[SP + 8] = RV ; assign return value to local variable same
SP = SP + 12 ; clean up space used for locals
RET ; return to caller

11

A function with pointers and typecasts
Taking all of the things we earlier discussed about generating code for pointers and
typecasts, we can make quite a nasty little function that puts it all together to test how
well you understand it all:

struct person {
 int age, id;
 struct person *next;
};

static char Muppets(struct person bert, struct person *ernie)
{
 struct person **oscar;

((struct fraction *)bert.next)->denominator = 0;

ernie = &bert;
oscar = &ernie;

(**oscar).next = ernie;
return bert.age;

}

Muppets AR
(total size 24 bytes) type size offset

ernie person * 4 20

bert.next person * 4 16

bert.id int 4 12

bert.age int 4 8

Return addr address 4 4

 SP -> oscar person** 4 0

As always, begin by making space for the locals:

SP = SP - 4 ; make space for oscar

Now, consider the code generated for the first line of C:

R1 = M[SP + 16] ; retrieve bert.next
; now that bert.next is safely tucked
; into R1, pretend that R1 points
; to a struct fraction

M[R1 + 4] = 0 ; note the offset of four needed to
; access the denominator field of fraction

On to the next two lines of assignments:

R1 = SP + 20 ; compute address of ernie
R2 = SP + 8 ; compute base address of bert

M[SP + 20] = R2 ; store bert's address in ernie

12

M[SP] = R1 ; store ernie's address in oscar

Now for the next line... Deep breath.

R1 = M[SP] ; load oscar, R1 now contains a struct
; person **

R1 = M[R1] ; deref, now R1 contains a struct person *

R2 = M[SP + 20] ; store ernie in a register

M[R1 + 8] = R2 ; if R1 stores the address of a struct
; person, then R1+8 is the address of
; that struct's next field. We store
; to that field.

And finally, the return statement:

R3 = M[SP + 8] ; load bert.age field
RV =.1 R3 ; copy lowest byte into return value
SP = SP + 4 ; clean up space used for locals
RET ; return control to caller

Note that amount of code generated is not proportional to the amount of thinking and
drawing you need to do in order to arrive at it!

