6. Approximation and fitting

- norm approximation
- least-norm problems
- regularized approximation
- robust approximation
Norm approximation

minimize $\|Ax - b\|$

($A \in \mathbb{R}^{m \times n}$ with $m \geq n$, $\| \cdot \|$ is a norm on \mathbb{R}^m)

interpretations of solution $x^* = \arg\min_x \|Ax - b\|$:

- **geometric**: Ax^* is point in $\mathcal{R}(A)$ closest to b
- **estimation**: linear measurement model

$$y = Ax + v$$

y are measurements, x is unknown, v is measurement error

given $y = b$, best guess of x is x^*

- **optimal design**: x are design variables (input), Ax is result (output)

 x^* is design that best approximates desired result b
examples

• least-squares approximation ($\| \cdot \|_2$): solution satisfies normal equations

$$A^T Ax = A^T b$$

($x^* = (A^T A)^{-1} A^T b$ if $\text{rank } A = n$)

• Chebyshev approximation ($\| \cdot \|_\infty$): can be solved as an LP

$$\begin{array}{ll}
\text{minimize} & t \\
\text{subject to} & -t \mathbf{1} \leq Ax - b \leq t \mathbf{1}
\end{array}$$

• sum of absolute residuals approximation ($\| \cdot \|_1$): can be solved as an LP

$$\begin{array}{ll}
\text{minimize} & \mathbf{1}^T y \\
\text{subject to} & -y \leq Ax - b \leq y
\end{array}$$
Penalty function approximation

\[
\begin{align*}
\text{minimize} & \quad \phi(r_1) + \cdots + \phi(r_m) \\
\text{subject to} & \quad r = Ax - b
\end{align*}
\]

\((A \in \mathbb{R}^{m \times n}, \phi : \mathbb{R} \to \mathbb{R} \text{ is a convex penalty function}) \)

examples

- **quadratic**: \(\phi(u) = u^2 \)
- **deadzone-linear with width** \(a \):
 \[
 \phi(u) = \max\{0, |u| - a\}
 \]
- **log-barrier with limit** \(a \):
 \[
 \phi(u) = \begin{cases}
 -a^2 \log(1 - (u/a)^2) & |u| < a \\
 \infty & \text{otherwise}
 \end{cases}
 \]
Example ($m = 100$, $n = 30$): histogram of residuals for penalties

$$\phi(u) = |u|, \quad \phi(u) = u^2, \quad \phi(u) = \max\{0, |u| - a\}, \quad \phi(u) = -\log(1 - u^2)$$

Shape of penalty function has large effect on distribution of residuals
Huber penalty function (with parameter M)

\[
\phi_{\text{hub}}(u) = \begin{cases}
 u^2 & \text{if } |u| \leq M \\
 M(2|u| - M) & \text{if } |u| > M
\end{cases}
\]

Linear growth for large u makes approximation less sensitive to outliers.

- **Left:** Huber penalty for $M = 1$
- **Right:** Affine function $f(t) = \alpha + \beta t$ fitted to 42 points t_i, y_i (circles) using quadratic (dashed) and Huber (solid) penalty.
Least-norm problems

\[
\begin{align*}
\text{minimize} & \quad \|x\| \\
\text{subject to} & \quad Ax = b \\
\end{align*}
\]

\((A \in \mathbb{R}^{m \times n} \text{ with } m \leq n, \| \cdot \| \text{ is a norm on } \mathbb{R}^n) \)

interpretations of solution \(x^* = \arg \min_{Ax=b} \|x\| \):

- **geometric**: \(x^* \) is point in affine set \(\{x \mid Ax = b\} \) with minimum distance to \(0 \)

- **estimation**: \(b = Ax \) are (perfect) measurements of \(x \); \(x^* \) is smallest ('most plausible') estimate consistent with measurements

- **design**: \(x \) are design variables (inputs); \(b \) are required results (outputs)

\(x^* \) is smallest ('most efficient') design that satisfies requirements
examples

• least-squares solution of linear equations ($\| \cdot \|_2$): can be solved via optimality conditions

\[2x + A^T \nu = 0, \quad Ax = b \]

• minimum sum of absolute values ($\| \cdot \|_1$): can be solved as an LP

\[
\begin{align*}
\text{minimize} & \quad 1^T y \\
\text{subject to} & \quad -y \leq x \leq y, \quad Ax = b
\end{align*}
\]

tends to produce sparse solution x^*

extension: least-penalty problem

\[
\begin{align*}
\text{minimize} & \quad \phi(x_1) + \cdots + \phi(x_n) \\
\text{subject to} & \quad Ax = b
\end{align*}
\]

$\phi : \mathbb{R} \rightarrow \mathbb{R}$ is convex penalty function
Regularized approximation

\[
\text{minimize (w.r.t. } R^2_+) \ (\| Ax - b \|, \| x \|)
\]

\(A \in \mathbb{R}^{m \times n}\), norms on \(\mathbb{R}^m\) and \(\mathbb{R}^n\) can be different

interpretation: find good approximation \(Ax \approx b\) with small \(x\)

- **estimation**: linear measurement model \(y = Ax + v\), with prior knowledge that \(\|x\|\) is small

- **optimal design**: small \(x\) is cheaper or more efficient, or the linear model \(y = Ax\) is only valid for small \(x\)

- **robust approximation**: good approximation \(Ax \approx b\) with small \(x\) is less sensitive to errors in \(A\) than good approximation with large \(x\)
Scalarized problem

\[
\text{minimize } \|Ax - b\| + \gamma\|x\|
\]

- solution for \(\gamma > 0 \) traces out optimal trade-off curve
- other common method: minimize \(\|Ax - b\|^2 + \delta\|x\|^2 \) with \(\delta > 0 \)

Tikhonov regularization

\[
\text{minimize } \|Ax - b\|^2_2 + \delta\|x\|^2_2
\]

can be solved as a least-squares problem

\[
\text{minimize } \left\| \begin{bmatrix} A \\ \sqrt{\delta}I \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|^2_2
\]

solution \(x^* = (A^TA + \delta I)^{-1}A^Tb \)
Optimal input design

linear dynamical system with impulse response \(h \):

\[
y(t) = \sum_{\tau=0}^{t} h(\tau)u(t - \tau), \quad t = 0, 1, \ldots, N
\]

input design problem: multicriterion problem with 3 objectives

1. tracking error with desired output \(y_{\text{des}} \): \(J_{\text{track}} = \sum_{t=0}^{N} (y(t) - y_{\text{des}}(t))^2 \)
2. input magnitude: \(J_{\text{mag}} = \sum_{t=0}^{N} u(t)^2 \)
3. input variation: \(J_{\text{der}} = \sum_{t=0}^{N-1} (u(t+1) - u(t))^2 \)

track desired output using a small and slowly varying input signal

regularized least-squares formulation

\[
\text{minimize} \quad J_{\text{track}} + \delta J_{\text{der}} + \eta J_{\text{mag}}
\]

for fixed \(\delta, \eta \), a least-squares problem in \(u(0), \ldots, u(N) \)
example: 3 solutions on optimal trade-off curve

(top) \(\delta = 0 \), small \(\eta \); (middle) \(\delta = 0 \), larger \(\eta \); (bottom) large \(\delta \)
Signal reconstruction

\[
\text{minimize (w.r.t. } R_+^2) \quad (\|\hat{x} - x_{\text{cor}}\|_2, \phi(\hat{x}))
\]

- \(x \in R^n \) is unknown signal
- \(x_{\text{cor}} = x + v \) is (known) corrupted version of \(x \), with additive noise \(v \)
- variable \(\hat{x} \) (reconstructed signal) is estimate of \(x \)
- \(\phi : R^n \rightarrow R \) is regularization function or smoothing objective

examples: quadratic smoothing, total variation smoothing:

\[
\phi_{\text{quad}}(\hat{x}) = \sum_{i=1}^{n-1} (\hat{x}_{i+1} - \hat{x}_i)^2, \quad \phi_{\text{tv}}(\hat{x}) = \sum_{i=1}^{n-1} |\hat{x}_{i+1} - \hat{x}_i|
\]
quadratic smoothing example

original signal x and noisy signal x_{cor}

three solutions on trade-off curve $\|\hat{x} - x_{\text{cor}}\|_2$ versus $\phi_{\text{quad}}(\hat{x})$
total variation reconstruction example

original signal \(x \) and noisy signal \(x_{\text{cor}} \)

three solutions on trade-off curve
\[\| \hat{x} - x_{\text{cor}} \|_2 \text{ versus } \phi_{\text{quad}}(\hat{x}) \]

quadratic smoothing smooths out noise \textbf{and} sharp transitions in signal
original signal x and noisy signal x_{cor}

total variation smoothing preserves sharp transitions in signal

three solutions on trade-off curve $\|\hat{x} - x_{\text{cor}}\|_2$ versus $\phi_{tv}(\hat{x})$
Robust approximation

minimize $\|Ax - b\|$ with uncertain A

two approaches:

• **stochastic**: assume A is random, minimize $\mathbb{E}\|Ax - b\|$

• **worst-case**: set A of possible values of A, minimize $\sup_{A \in \mathcal{A}} \|Ax - b\|$

tractable only in special cases (certain norms $\| \cdot \|$, distributions, sets \mathcal{A})

example: $A(u) = A_0 + uA_1$

• x_{nom} minimizes $\|A_0x - b\|_2^2$

• x_{stoch} minimizes $\mathbb{E}\|A(u)x - b\|_2^2$

 with u uniform on $[-1, 1]$

• x_{wc} minimizes $\sup_{-1 \leq u \leq 1} \|A(u)x - b\|_2^2$

figure shows $r(u) = \|A(u)x - b\|_2$
stochastic robust LS with $A = \bar{A} + U$, U random, $EU = 0$, $EU^TU = P$

minimize $\mathbb{E} \| (\bar{A} + U)x - b \|^2_2$

• explicit expression for objective:

$$\mathbb{E} \| Ax - b \|^2_2 = \mathbb{E} \| \bar{A}x - b + Ux \|^2_2$$

$$= \| \bar{A}x - b \|^2_2 + \mathbb{E} x^TU^TUx$$

$$= \| \bar{A}x - b \|^2_2 + x^TPx$$

• hence, robust LS problem is equivalent to LS problem

minimize $\| \bar{A}x - b \|^2_2 + \| P^{1/2}x \|^2_2$

• for $P = \delta I$, get Tikhonov regularized problem

minimize $\| \bar{A}x - b \|^2_2 + \delta \| x \|^2_2$
worst-case robust LS with \(\mathcal{A} = \{ \overline{A} + u_1A_1 + \cdots + u_pA_p \mid \|u\|_2 \leq 1 \} \)

minimize \(\sup_{A \in \mathcal{A}} \|Ax - b\|_2^2 = \sup_{\|u\|_2 \leq 1} \|P(x)u + q(x)\|_2^2 \)

where \(P(x) = [A_1x \ A_2x \ \cdots \ A_px] \), \(q(x) = \overline{A}x - b \)

- from page 5–14, strong duality holds between the following problems

maximize \(\|Pu + q\|_2^2 \) subject to \(\|u\|_2 \leq 1 \)

minimize \(t + \lambda \) subject to
\[
\begin{bmatrix}
I & P & q \\
P^T & \lambda I & 0 \\
q^T & 0 & t
\end{bmatrix} \succeq 0
\]

- hence, robust LS problem is equivalent to SDP

minimize \(t + \lambda \) subject to
\[
\begin{bmatrix}
I & P(x) & q(x) \\
P(x)^T & \lambda I & 0 \\
q(x)^T & 0 & t
\end{bmatrix} \succeq 0
\]
example: histogram of residuals

\[r(u) = \|(A_0 + u_1 A_1 + u_2 A_2)x - b\|_2 \]

with \(u \) uniformly distributed on unit disk, for three values of \(x \)

- \(x_{ls} \) minimizes \(\|A_0 x - b\|_2 \)
- \(x_{tik} \) minimizes \(\|A_0 x - b\|_2^2 + \|x\|_2^2 \) (Tikhonov solution)
- \(x_{wc} \) minimizes \(\sup_{\|u\|_2 \leq 1} \|A_0 x - b\|_2^2 + \|x\|_2^2 \)