7. Statistical estimation

- maximum likelihood estimation
- optimal detector design
- experiment design
Parametric distribution estimation

• distribution estimation problem: estimate probability density $p(y)$ of a random variable from observed values

• parametric distribution estimation: choose from a family of densities $p_x(y)$, indexed by a parameter x

maximum likelihood estimation

$$\text{maximize (over } x) \quad \log p_x(y)$$

• y is observed value

• $l(x) = \log p_x(y)$ is called log-likelihood function

• can add constraints $x \in C$ explicitly, or define $p_x(y) = 0$ for $x \notin C$

• a convex optimization problem if $\log p_x(y)$ is concave in x for fixed y
Linear measurements with IID noise

linear measurement model

\[y_i = a_i^T x + v_i, \quad i = 1, \ldots, m \]

- \(x \in \mathbb{R}^n \) is vector of unknown parameters
- \(v_i \) is IID measurement noise, with density \(p(z) \)
- \(y_i \) is measurement: \(y \in \mathbb{R}^m \) has density \(p_x(y) = \prod_{i=1}^m p(y_i - a_i^T x) \)

maximum likelihood estimate: any solution \(x \) of

\[
\text{maximize} \quad l(x) = \sum_{i=1}^m \log p(y_i - a_i^T x)
\]

(\(y \) is observed value)
examples

- Gaussian noise $\mathcal{N}(0, \sigma^2)$: $p(z) = (2\pi\sigma^2)^{-1/2}e^{-z^2/(2\sigma^2)},$

$$l(x) = -\frac{m}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{m}(a_i^T x - y_i)^2$$

ML estimate is LS solution

- Laplacian noise: $p(z) = (1/(2a))e^{-|z|/a},$

$$l(x) = -m\log(2a) - \frac{1}{a}\sum_{i=1}^{m}|a_i^T x - y_i|$$

ML estimate is ℓ_1-norm solution

- uniform noise on $[-a, a]$:

$$l(x) = \begin{cases}
-m\log(2a) & |a_i^T x - y_i| \leq a, \quad i = 1, \ldots, m \\
-\infty & \text{otherwise}
\end{cases}$$

ML estimate is any x with $|a_i^T x - y_i| \leq a$
Logistic regression

random variable $y \in \{0, 1\}$ with distribution

$$p = \text{prob}(y = 1) = \frac{\exp(a^T u + b)}{1 + \exp(a^T u + b)}$$

- a, b are parameters; $u \in \mathbb{R}^n$ are (observable) explanatory variables
- estimation problem: estimate a, b from m observations (u_i, y_i)

log-likelihood function (for $y_1 = \cdots = y_k = 1$, $y_{k+1} = \cdots = y_m = 0$):

$$l(a, b) = \log \left(\prod_{i=1}^{k} \frac{\exp(a^T u_i + b)}{1 + \exp(a^T u_i + b)} \prod_{i=k+1}^{m} \frac{1}{1 + \exp(a^T u_i + b)} \right)$$

$$= \sum_{i=1}^{k} (a^T u_i + b) - \sum_{i=1}^{m} \log(1 + \exp(a^T u_i + b))$$

concave in a, b
Example \((n = 1, m = 50\text{ measurements})\)

- circles show 50 points \((u_i, y_i)\)
- solid curve is ML estimate of \(p = \exp(au + b)/(1 + \exp(au + b))\)
(Binary) hypothesis testing

detection (hypothesis testing) problem

given observation of a random variable $X \in \{1, \ldots, n\}$, choose between:

- hypothesis 1: X was generated by distribution $p = (p_1, \ldots, p_n)$
- hypothesis 2: X was generated by distribution $q = (q_1, \ldots, q_n)$

randomized detector

- a nonnegative matrix $T \in \mathbb{R}^{2\times n}$, with $1^T T = 1^T$
- if we observe $X = k$, we choose hypothesis 1 with probability t_{1k}, hypothesis 2 with probability t_{2k}
- if all elements of T are 0 or 1, it is called a deterministic detector
detection probability matrix:

\[D = \begin{bmatrix} Tp & Tq \end{bmatrix} = \begin{bmatrix} 1 - P_{fp} & P_{fn} \\ P_{fp} & 1 - P_{fn} \end{bmatrix} \]

- \(P_{fp} \) is probability of selecting hypothesis 2 if \(X \) is generated by distribution 1 (false positive)
- \(P_{fn} \) is probability of selecting hypothesis 1 if \(X \) is generated by distribution 2 (false negative)

multicriterion formulation of detector design

\[
\begin{align*}
\text{minimize (w.r.t. } R_+^2) & \quad (P_{fp}, P_{fn}) = ((Tp)_2, (Tq)_1) \\
\text{subject to} & \quad t_{1k} + t_{2k} = 1, \quad k = 1, \ldots, n \\
& \quad t_{ik} \geq 0, \quad i = 1, 2, \quad k = 1, \ldots, n
\end{align*}
\]

variable \(T \in R^{2 \times n} \)
Scalarization (with weight $\lambda > 0$)

\[
\begin{align*}
\text{minimize} & \quad (Tp)_2 + \lambda(Tq)_1 \\
\text{subject to} & \quad t_{1k} + t_{2k} = 1, \quad t_{ik} \geq 0, \quad i = 1, 2, \quad k = 1, \ldots, n
\end{align*}
\]

an LP with a simple analytical solution

\[
(t_{1k}, t_{2k}) = \begin{cases}
(1, 0) & p_k \geq \lambda q_k \\
(0, 1) & p_k < \lambda q_k
\end{cases}
\]

- a deterministic detector, given by a likelihood ratio test
- if $p_k = \lambda q_k$ for some k, any value $0 \leq t_{1k} \leq 1$, $t_{1k} = 1 - t_{2k}$ is optimal (i.e., Pareto-optimal detectors include non-deterministic detectors)

Minimax detector

\[
\begin{align*}
\text{minimize} & \quad \max\{P_{fp}, P_{fn}\} = \max\{(Tp)_2, (Tq)_1\} \\
\text{subject to} & \quad t_{1k} + t_{2k} = 1, \quad t_{ik} \geq 0, \quad i = 1, 2, \quad k = 1, \ldots, n
\end{align*}
\]

an LP; solution is usually not deterministic
example

\[
P = \begin{bmatrix}
0.70 & 0.10 \\
0.20 & 0.10 \\
0.05 & 0.70 \\
0.05 & 0.10
\end{bmatrix}
\]

solutions 1, 2, 3 (and endpoints) are deterministic; 4 is minimax detector
Experiment design

m linear measurements $y_i = a_i^T x + w_i$, $i = 1, \ldots, m$ of unknown $x \in \mathbb{R}^n$

- measurement errors w_i are IID $\mathcal{N}(0, 1)$
- ML (least-squares) estimate is

$$\hat{x} = \left(\sum_{i=1}^{m} a_i a_i^T \right)^{-1} \sum_{i=1}^{m} y_i a_i$$

- error $e = \hat{x} - x$ has zero mean and covariance

$$E = \mathbb{E} ee^T = \left(\sum_{i=1}^{m} a_i a_i^T \right)^{-1}$$

confidence ellipsoids are given by \(\{ x \mid (x - \hat{x})^T E^{-1} (x - \hat{x}) \leq \beta \}\)

experiment design: choose $a_i \in \{v_1, \ldots, v_p\}$ (a set of possible test vectors) to make E ‘small’
vector optimization formulation

\[
\begin{align*}
\text{minimize (w.r.t. } S^n_+) & \quad E = \left(\sum_{k=1}^{p} m_k v_k v_k^T \right)^{-1} \\
\text{subject to} & \quad m_k \geq 0, \quad m_1 + \cdots + m_p = m \\
& \quad m_k \in \mathbb{Z}
\end{align*}
\]

- variables are \(m_k\) (\# vectors \(a_i\) equal to \(v_k\))
- difficult in general, due to integer constraint

relaxed experiment design

assume \(m \gg p\), use \(\lambda_k = m_k/m\) as (continuous) real variable

\[
\begin{align*}
\text{minimize (w.r.t. } S^n_+) & \quad E = \left(1/m \right) \left(\sum_{k=1}^{p} \lambda_k v_k v_k^T \right)^{-1} \\
\text{subject to} & \quad \lambda \succeq 0, \quad \mathbf{1}^T \lambda = 1
\end{align*}
\]

- common scalarizations: minimize \(\log \det E, \text{tr } E, \lambda_{\max}(E), \ldots\)
- can add other convex constraints, \(e.g.,\) bound experiment cost \(c^T \lambda \leq B\)
\textit{D-optimal} design

\begin{align*}
\text{minimize} & \quad \log \det (\sum_{k=1}^{p} \lambda_k v_k v_k^T)^{-1} \\
\text{subject to} & \quad \lambda \succeq 0, \quad 1^T \lambda = 1
\end{align*}

interpretation: minimizes volume of confidence ellipsoids

\textbf{dual problem}

\begin{align*}
\text{maximize} & \quad \log \det W + n \log n \\
\text{subject to} & \quad v_k^T W v_k \leq 1, \quad k = 1, \ldots, p
\end{align*}

interpretation: \(\{ x \mid x^T W x \leq 1 \} \) is minimum volume ellipsoid centered at origin, that includes all test vectors \(v_k \)

\textbf{complementary slackness:} for \(\lambda, W \) primal and dual optimal

\[\lambda_k (1 - v_k^T W v_k) = 0, \quad k = 1, \ldots, p \]

optimal experiment uses vectors \(v_k \) on boundary of ellipsoid defined by \(W \)
example \((p = 20)\)

\[
\lambda_1 = 0.5
\]

\[
\lambda_2 = 0.5
\]

design uses two vectors, on boundary of ellipse defined by optimal \(W\)
derivation of dual of page 1–13

first reformulate primal problem with new variable X:

\[
\begin{align*}
\text{minimize} & \quad \log \det X^{-1} \\
\text{subject to} & \quad X = \sum_{k=1}^{p} \lambda_k v_k v_k^T, \quad \lambda \succeq 0, \quad 1^T \lambda = 1
\end{align*}
\]

\[L(X, \lambda, Z, z, \nu) = \log \det X^{-1} + \text{tr} \left(Z \left(X - \sum_{k=1}^{p} \lambda_k v_k v_k^T \right) \right) - z^T \lambda + \nu (1^T \lambda - 1)\]

- minimize over X by setting gradient to zero: $-X^{-1} + Z = 0$
- minimum over λ_k is $-\infty$ unless $-v_k^T Z v_k - z_k + \nu = 0$

dual problem

\[
\begin{align*}
\text{maximize} & \quad n + \log \det Z - \nu \\
\text{subject to} & \quad v_k^T Z v_k \leq \nu, \quad k = 1, \ldots, p
\end{align*}
\]

change variable $W = Z/\nu$, and optimize over ν to get dual of page 1–13

Statistical estimation 7–15