8. Geometric problems

• extremal volume ellipsoids

• centering

• classification

• placement and facility location
Minimum volume ellipsoid around a set

Löwner-John ellipsoid of a set C: minimum volume ellipsoid E s.t. $C \subseteq E$

- parametrize E as $E = \{v \mid \|Av + b\|_2 \leq 1\}$; w.l.o.g. assume $A \in S^{n}_{++}$
- $\text{vol } E$ is proportional to $\det A^{-1}$; to compute minimum volume ellipsoid,

 $$\text{minimize (over } A, b) \quad \log \det A^{-1}$$

 $$\text{subject to } \sup_{v \in C} \|Av + b\|_2 \leq 1$$

 convex, but evaluating the constraint can be hard (for general C)

finite set $C = \{x_1, \ldots, x_m\}$:

 $$\text{minimize (over } A, b) \quad \log \det A^{-1}$$

 $$\text{subject to } \|Ax_i + b\|_2 \leq 1, \quad i = 1, \ldots, m$$

also gives Löwner-John ellipsoid for polyhedron $\text{conv}\{x_1, \ldots, x_m\}$
Maximum volume inscribed ellipsoid

maximum volume ellipsoid \mathcal{E} inside a convex set $C \subseteq \mathbb{R}^n$

- parametrize \mathcal{E} as $\mathcal{E} = \{Bu + d \mid \|u\|_2 \leq 1\}$; w.l.o.g. assume $B \in \mathbb{S}_{++}^n$
- $\text{vol} \mathcal{E}$ is proportional to $\det B$; can compute \mathcal{E} by solving

\[
\begin{align*}
\text{maximize} & \quad \log \det B \\
\text{subject to} & \quad \sup_{\|u\|_2 \leq 1} I_C(Bu + d) \leq 0
\end{align*}
\]

(where $I_C(x) = 0$ for $x \in C$ and $I_C(x) = \infty$ for $x \notin C$)

convex, but evaluating the constraint can be hard (for general C)

polyhedron $\{x \mid a^T_i x \leq b_i, \ i = 1, \ldots, m\}$:

\[
\begin{align*}
\text{maximize} & \quad \log \det B \\
\text{subject to} & \quad \|Ba_i\|_2 + a^T_i d \leq b_i, \quad i = 1, \ldots, m
\end{align*}
\]

(constraint follows from $\sup_{\|u\|_2 \leq 1} a^T_i (Bu + d) = \|Ba_i\|_2 + a^T_i d$)
Efficiency of ellipsoidal approximations

$C \subseteq \mathbb{R}^n$ convex, bounded, with nonempty interior

- Löwner-John ellipsoid, shrunk by a factor n, lies inside C
- maximum volume inscribed ellipsoid, expanded by a factor n, covers C

example (for two polyhedra in \mathbb{R}^2)

factor n can be improved to \sqrt{n} if C is symmetric
Centering

some possible definitions of ‘center’ of a convex set C:

- center of largest inscribed ball (‘Chebyshev center’) for polyhedron, can be computed via linear programming (page 4–19)
- center of maximum volume inscribed ellipsoid (page 1–3)

MVE center is invariant under affine coordinate transformations
Analytic center of a set of inequalities

the analytic center of set of convex inequalities and linear equations

\[f_i(x) \leq 0, \quad i = 1, \ldots, m, \quad Fx = g \]

is defined as the optimal point of

\[
\begin{align*}
m\text{inimize} & \quad - \sum_{i=1}^{m} \log(-f_i(x)) \\
\text{subject to} & \quad Fx = g
\end{align*}
\]

• more easily computed than MVE or Chebyshev center (see later)
• not just a property of the feasible set: two sets of inequalities can describe the same set, but have different analytic centers
analytic center of linear inequalities $a^T_i x \leq b_i, \ i = 1, \ldots, m$

x_{ac} is minimizer of

$$
\phi(x) = -\sum_{i=1}^{m} \log(b_i - a^T_i x)
$$

inner and outer ellipsoids from analytic center:

$$
E_{inner} \subseteq \{x \mid a^T_i x \leq b_i, \ i = 1, \ldots, m\} \subseteq E_{outer}
$$

where

$$
E_{inner} = \{x \mid (x - x_{ac})^T \nabla^2 \phi(x_{ac})(x - x_{ac}) \leq 1\}
$$

$$
E_{outer} = \{x \mid (x - x_{ac})^T \nabla^2 \phi(x_{ac})(x - x_{ac}) \leq m(m - 1)\}
$$
Linear discrimination

separate two sets of points \(\{x_1, \ldots, x_N\}, \{y_1, \ldots, y_M\} \) by a hyperplane:

\[
a^T x_i + b > 0, \quad i = 1, \ldots, N, \quad a^T y_i + b < 0, \quad i = 1, \ldots, M
\]

homogeneous in \(a, b \), hence equivalent to

\[
a^T x_i + b \geq 1, \quad i = 1, \ldots, N, \quad a^T y_i + b \leq -1, \quad i = 1, \ldots, M
\]

a set of linear inequalities in \(a, b \)
Robust linear discrimination

(Euclidean) distance between hyperplanes

\[\mathcal{H}_1 = \{ z \mid a^T z + b = 1 \} \]
\[\mathcal{H}_2 = \{ z \mid a^T z + b = -1 \} \]

is \(\text{dist}(\mathcal{H}_1, \mathcal{H}_2) = 2/\|a\|_2 \)

to separate two sets of points by maximum margin,

\[
\begin{aligned}
\text{minimize} & \quad (1/2)\|a\|_2 \\
\text{subject to} & \quad a^T x_i + b \geq 1, \quad i = 1, \ldots, N \\
& \quad a^T y_i + b \leq -1, \quad i = 1, \ldots, M
\end{aligned}
\]

(after squaring objective) a QP in \(a, b \)
Lagrange dual of maximum margin separation problem (1)

maximize \(1^T \lambda + 1^T \mu \)
subject to \(2 \left\| \sum_{i=1}^{N} \lambda_i x_i - \sum_{i=1}^{M} \mu_i y_i \right\|_2 \leq 1 \)
\(1^T \lambda = 1^T \mu, \quad \lambda \succeq 0, \quad \mu \succeq 0 \) (2)

from duality, optimal value is inverse of maximum margin of separation interpretation

• change variables to \(\theta_i = \lambda_i / 1^T \lambda, \quad \gamma_i = \mu_i / 1^T \mu, \quad t = 1 / (1^T \lambda + 1^T \mu) \)
• invert objective to minimize \(1 / (1^T \lambda + 1^T \mu) = t \)

minimize \(t \)
subject to \(\left\| \sum_{i=1}^{N} \theta_i x_i - \sum_{i=1}^{M} \gamma_i y_i \right\|_2 \leq t \)
\(\theta \succeq 0, \quad 1^T \theta = 1, \quad \gamma \succeq 0, \quad 1^T \gamma = 1 \)

optimal value is distance between convex hulls
Approximate linear separation of non-separable sets

\[
\begin{align*}
\text{minimize} & \quad 1^T u + 1^T v \\
\text{subject to} & \quad a^T x_i + b \geq 1 - u_i, \quad i = 1, \ldots, N \\
& \quad a^T y_i + b \leq -1 + v_i, \quad i = 1, \ldots, M \\
& \quad u \succeq 0, \quad v \succeq 0
\end{align*}
\]

• an LP in \(a, b, u, v\)

• at optimum, \(u_i = \max\{0, 1 - a^T x_i - b\}\), \(v_i = \max\{0, 1 + a^T y_i + b\}\)

• can be interpreted as a heuristic for minimizing \#misclassified points
Support vector classifier

minimize \[\|a\|_2 + \gamma(1^T u + 1^T v) \]
subject to \[a^T x_i + b \geq 1 - u_i, \quad i = 1, \ldots, N \]
\[a^T y_i + b \leq -1 + v_i, \quad i = 1, \ldots, M \]
\[u \succeq 0, \quad v \succeq 0 \]

produces point on trade-off curve between inverse of margin \(2/\|a\|_2\) and classification error, measured by total slack \(1^T u + 1^T v\)

same example as previous page, with \(\gamma = 0.1\):
Nonlinear discrimination

separate two sets of points by a nonlinear function:

\[f(x_i) > 0, \quad i = 1, \ldots, N, \quad f(y_i) < 0, \quad i = 1, \ldots, M \]

• choose a linearly parametrized family of functions

\[f(z) = \theta^T F(z) \]

\[F = (F_1, \ldots, F_k) : \mathbb{R}^n \to \mathbb{R}^k \text{ are basis functions} \]

• solve a set of linear inequalities in \(\theta \):

\[\theta^T F(x_i) \geq 1, \quad i = 1, \ldots, N, \quad \theta^T F(y_i) \leq -1, \quad i = 1, \ldots, M \]
quadratic discrimination: \[f(z) = z^T P z + q^T z + r \]

\[x_i^T P x_i + q^T x_i + r \geq 1, \quad y_i^T P y_i + q^T y_i + r \leq -1 \]

can add additional constraints (e.g., \(P \preceq -I \) to separate by an ellipsoid)

polynomial discrimination: \(F(z) \) are all monomials up to a given degree
Placement and facility location

• N points with coordinates $x_i \in \mathbb{R}^2$ (or \mathbb{R}^3)
• some positions x_i are given; the other x_i’s are variables
• for each pair of points, a cost function $f_{ij}(x_i, x_j)$

placement problem

\[
\text{minimize} \quad \sum_{i \neq j} f_{ij}(x_i, x_j)
\]

variables are positions of free points

interpretations

• points represent plants or warehouses; f_{ij} is transportation cost between facilities i and j
• points represent cells on an IC; f_{ij} represents wirelength
example: minimize $\sum_{(i,j) \in A} h(\|x_i - x_j\|_2)$, with 6 free points, 27 links

optimal placement for $h(z) = z$, $h(z) = z^2$, $h(z) = z^4$

histograms of connection lengths $\|x_i - x_j\|_2$