9. Numerical linear algebra background

- matrix structure and algorithm complexity
- solving linear equations with factored matrices
- LU, Cholesky, LDL^T factorization
- block elimination and the matrix inversion lemma
- solving underdetermined equations
Matrix structure and algorithm complexity

cost (execution time) of solving $Ax = b$ with $A \in \mathbb{R}^{n \times n}$

- for general methods, grows as n^3
- less if A is structured (banded, sparse, Toeplitz, . . .)

flop counts

- flop (floating-point operation): one addition, subtraction, multiplication, or division of two floating-point numbers
- to estimate complexity of an algorithm: express number of flops as a (polynomial) function of the problem dimensions, and simplify by keeping only the leading terms
- not an accurate predictor of computation time on modern computers
- useful as a rough estimate of complexity
vector-vector operations \((x, y \in \mathbb{R}^n)\)

- inner product \(x^T y\): \(2n - 1\) flops (or \(2n\) if \(n\) is large)
- sum \(x + y\), scalar multiplication \(\alpha x\): \(n\) flops

matrix-vector product \(y = Ax\) with \(A \in \mathbb{R}^{m \times n}\)

- \(m(2n - 1)\) flops (or \(2mn\) if \(n\) large)
- \(2N\) if \(A\) is sparse with \(N\) nonzero elements
- \(2p(n + m)\) if \(A\) is given as \(A = UV^T\), \(U \in \mathbb{R}^{m \times p}\), \(V \in \mathbb{R}^{n \times p}\)

matrix-matrix product \(C = AB\) with \(A \in \mathbb{R}^{m \times n}\), \(B \in \mathbb{R}^{n \times p}\)

- \(mp(2n - 1)\) flops (or \(2mnp\) if \(n\) large)
- less if \(A\) and/or \(B\) are sparse
- \((1/2)m(m + 1)(2n - 1) \approx m^2n\) if \(m = p\) and \(C\) symmetric
Linear equations that are easy to solve

diagonal matrices \((a_{ij} = 0 \text{ if } i \neq j)\): \(n\) flops

\[
x = A^{-1}b = \left(\frac{b_1}{a_{11}}, \ldots, \frac{b_n}{a_{nn}} \right)
\]

lower triangular \((a_{ij} = 0 \text{ if } j > i)\): \(n^2\) flops

\[
x_1 := \frac{b_1}{a_{11}} \\
x_2 := \frac{b_2 - a_{21}x_1}{a_{22}} \\
x_3 := \frac{b_3 - a_{31}x_1 - a_{32}x_2}{a_{33}} \\
\vdots \\
x_n := \left(\frac{b_n - a_{n1}x_1 - a_{n2}x_2 - \cdots - a_{n,n-1}x_{n-1}}{a_{nn}} \right)
\]

called forward substitution

upper triangular \((a_{ij} = 0 \text{ if } j < i)\): \(n^2\) flops via backward substitution
orthogonal matrices: \(A^{-1} = A^T \)

- \(2n^2 \) flops to compute \(x = A^T b \) for general \(A \)
- less with structure, e.g., if \(A = I - 2uu^T \) with \(\|u\|_2 = 1 \), we can compute \(x = A^T b = b - 2(u^T b)u \) in \(4n \) flops

permutation matrices:

\[
a_{ij} = \begin{cases}
1 & j = \pi_i \\
0 & \text{otherwise}
\end{cases}
\]

where \(\pi = (\pi_1, \pi_2, \ldots, \pi_n) \) is a permutation of \((1, 2, \ldots, n)\)

- interpretation: \(Ax = (x_{\pi_1}, \ldots, x_{\pi_n}) \)
- satisfies \(A^{-1} = A^T \), hence cost of solving \(Ax = b \) is 0 flops

example:

\[
A = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
\end{bmatrix}, \quad A^{-1} = A^T = \begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
\end{bmatrix}
\]
The factor-solve method for solving $Ax = b$

- factor A as a product of simple matrices (usually 2 or 3):
 \[A = A_1 A_2 \cdots A_k \]
 (A_i diagonal, upper or lower triangular, etc)

- compute $x = A^{-1}b = A_k^{-1} \cdots A_2^{-1} A_1^{-1} b$ by solving k ‘easy’ equations
 \[A_1 x_1 = b, \quad A_2 x_2 = x_1, \quad \ldots, \quad A_k x = x_{k-1} \]

Cost of factorization step usually dominates cost of solve step

equations with multiple righthand sides

\[Ax_1 = b_1, \quad Ax_2 = b_2, \quad \ldots, \quad Ax_m = b_m \]

Cost: one factorization plus m solves
LU factorization

every nonsingular matrix A can be factored as

$$A = PLU$$

with P a permutation matrix, L lower triangular, U upper triangular

cost: $(2/3)n^3$ flops

Solving linear equations by LU factorization.

given a set of linear equations $Ax = b$, with A nonsingular.

1. **LU factorization.** Factor A as $A = PLU$ ($(2/3)n^3$ flops).
2. **Permutation.** Solve $Pz_1 = b$ (0 flops).
3. **Forward substitution.** Solve $Lz_2 = z_1$ $(n^2$ flops).
4. **Backward substitution.** Solve $Ux = z_2$ $(n^2$ flops).

cost: $(2/3)n^3 + 2n^2 \approx (2/3)n^3$ for large n
sparse LU factorization

\[A = P_1LU P_2 \]

- adding permutation matrix \(P_2 \) offers possibility of sparser \(L, U \) (hence, cheaper factor and solve steps)

- \(P_1 \) and \(P_2 \) chosen (heuristically) to yield sparse \(L, U \)

- choice of \(P_1 \) and \(P_2 \) depends on sparsity pattern and values of \(A \)

- cost is usually much less than \((2/3)n^3\); exact value depends in a complicated way on \(n \), number of zeros in \(A \), sparsity pattern
Cholesky factorization

every positive definite A can be factored as

$$A = LL^T$$

with L lower triangular

cost: $(1/3)n^3$ flops

Solving linear equations by Cholesky factorization.

given a set of linear equations $Ax = b$, with $A \in S^n_{++}$.

1. **Cholesky factorization.** Factor A as $A = LL^T ((1/3)n^3$ flops).
2. **Forward substitution.** Solve $Lz_1 = b$ (n^2 flops).
3. **Backward substitution.** Solve $L^Tx = z_1$ (n^2 flops).

cost: $(1/3)n^3 + 2n^2 \approx (1/3)n^3$ for large n
sparse Cholesky factorization

\[A = PLL^T P^T \]

• adding permutation matrix \(P \) offers possibility of sparser \(L \)

• \(P \) chosen (heuristically) to yield sparse \(L \)

• choice of \(P \) only depends on sparsity pattern of \(A \) (unlike sparse LU)

• cost is usually much less than \((1/3)n^3\); exact value depends in a complicated way on \(n \), number of zeros in \(A \), sparsity pattern
LDL^T factorization

Every nonsingular symmetric matrix A can be factored as

$$A = PLDL^TP^T$$

with P a permutation matrix, L lower triangular, D block diagonal with 1 \times 1 or 2 \times 2 diagonal blocks

Cost: $(1/3)n^3$

- Cost of solving symmetric sets of linear equations by LDL^T factorization:
 $$(1/3)n^3 + 2n^2 \approx (1/3)n^3$$ for large n

- For sparse A, can choose P to yield sparse L; cost $\ll (1/3)n^3$
Equations with structured sub-blocks

\[
\begin{bmatrix}
 A_{11} & A_{12} \\
 A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}
=
\begin{bmatrix}
 b_1 \\
 b_2
\end{bmatrix}
\]

(1)

- variables \(x_1 \in \mathbb{R}^{n_1}, x_2 \in \mathbb{R}^{n_2};\) blocks \(A_{ij} \in \mathbb{R}^{n_i \times n_j}\)
- if \(A_{11}\) is nonsingular, can eliminate \(x_1\): \(x_1 = A_{11}^{-1}(b_1 - A_{12}x_2);\)
 to compute \(x_2\), solve
 \[
 (A_{22} - A_{21}A_{11}^{-1}A_{12})x_2 = b_2 - A_{21}A_{11}^{-1}b_1
 \]

Solving linear equations by block elimination.

given a nonsingular set of linear equations (1), with \(A_{11}\) nonsingular.

1. Form \(A_{11}^{-1}A_{12}\) and \(A_{11}^{-1}b_1\).
2. Form \(S = A_{22} - A_{21}A_{11}^{-1}A_{12}\) and \(\tilde{b} = b_2 - A_{21}A_{11}^{-1}b_1\).
3. Determine \(x_2\) by solving \(Sx_2 = \tilde{b}\).
4. Determine \(x_1\) by solving \(A_{11}x_1 = b_1 - A_{12}x_2\).
dominant terms in flop count

- step 1: \(f + n_2 s \) (\(f \) is cost of factoring \(A_{11} \); \(s \) is cost of solve step)
- step 2: \(2n_2^2 n_1 \) (cost dominated by product of \(A_{21} \) and \(A_{11}^{-1} A_{12} \))
- step 3: \((2/3)n_2^3 \)

total: \(f + n_2 s + 2n_2^2 n_1 + (2/3)n_2^3 \)

elements

- general \(A_{11} \) (\(f = (2/3)n_1^3, s = 2n_1^2 \)): no gain over standard method

\[
\#\text{flops} = (2/3)n_1^3 + 2n_1^2 n_2 + 2n_2^2 n_1 + (2/3)n_2^3 = (2/3)(n_1 + n_2)^3
\]

- block elimination is useful for structured \(A_{11} \) (\(f \ll n_1^3 \))

 for example, diagonal (\(f = 0, s = n_1 \)): \(\#\text{flops} \approx 2n_2^2 n_1 + (2/3)n_2^3 \)
Structured matrix plus low rank term

\[(A + BC')x = b\]

- \(A \in \mathbb{R}^{n \times n}\), \(B \in \mathbb{R}^{n \times p}\), \(C \in \mathbb{R}^{p \times n}\)
- assume \(A\) has structure \((Ax = b\) easy to solve\)

first write as

\[
\begin{bmatrix}
 A & B \\
 C & -I
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix} =
\begin{bmatrix}
 b \\
 0
\end{bmatrix}
\]

now apply block elimination: solve

\[(I + CA^{-1}B)y = CA^{-1}b,\]

then solve \(Ax = b - By\)

this proves the **matrix inversion lemma**: if \(A\) and \(A + BC\) nonsingular,

\[(A + BC)^{-1} = A^{-1} - A^{-1}B(I + CA^{-1}B)^{-1}CA^{-1}\]
example: A diagonal, B, C dense

- method 1: form $D = A + BC$, then solve $Dx = b$

 cost: $(2/3)n^3 + 2pn^2$

- method 2 (via matrix inversion lemma): solve

 $$(I + CA^{-1}B)y = CA^{-1}b, \tag{2}$$

 then compute $x = A^{-1}b - A^{-1}By$

 total cost is dominated by (2): $2p^2n + (2/3)p^3$ (i.e., linear in n)

Numerical linear algebra background 9–15
Underdetermined linear equations

if $A \in \mathbb{R}^{p \times n}$ with $p < n$, $\text{rank } A = p$,

$$\{x \mid Ax = b\} = \{Fz + \hat{x} \mid z \in \mathbb{R}^{n-p}\}$$

• \hat{x} is (any) particular solution
• columns of $F \in \mathbb{R}^{n \times (n-p)}$ span nullspace of A
• there exist several numerical methods for computing F
 (QR factorization, rectangular LU factorization, . . .)