EE364a Homework 1 solutions

2.1 Let \(C \subseteq \mathbb{R}^n \) be a convex set, with \(x_1, \ldots, x_k \in C \), and let \(\theta_1, \ldots, \theta_k \in \mathbb{R} \) satisfy \(\theta_i \geq 0 \), \(\theta_1 + \cdots + \theta_k = 1 \). Show that \(\theta_1 x_1 + \cdots + \theta_k x_k \in C \). (The definition of convexity is that this holds for \(k = 2 \); you must show it for arbitrary \(k \).) Hint. Use induction on \(k \).

Solution. This is readily shown by induction from the definition of convex set. We illustrate the idea for \(k = 3 \), leaving the general case to the reader. Suppose that \(x_1, x_2, x_3 \in C \), and \(\theta_1 + \theta_2 + \theta_3 = 1 \) with \(\theta_1, \theta_2, \theta_3 \geq 0 \). We will show that \(y = \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 \in C \). At least one of the \(\theta_i \) is not equal to one; without loss of generality we can assume that \(\theta_1 \neq 1 \). Then we can write

\[
y = \theta_1 x_1 + (1 - \theta_1)(\mu_2 x_2 + \mu_3 x_3)
\]

where \(\mu_2 = \theta_2/(1 - \theta_1) \) and \(\mu_2 = \theta_3/(1 - \theta_1) \). Note that \(\mu_2, \mu_3 \geq 0 \) and

\[
\mu_1 + \mu_2 = \frac{\theta_2 + \theta_3}{1 - \theta_1} = \frac{1 - \theta_1}{1 - \theta_1} = 1.
\]

Since \(C \) is convex and \(x_2, x_3 \in C \), we conclude that \(\mu_2 x_2 + \mu_3 x_3 \in C \). Since this point and \(x_1 \) are in \(C \), \(y \in C \).

2.2 Show that a set is convex if and only if its intersection with any line is convex. Show that a set is affine if and only if its intersection with any line is affine.

Solution. We prove the first part. The intersection of two convex sets is convex. Therefore if \(S \) is a convex set, the intersection of \(S \) with a line is convex.

Conversely, suppose the intersection of \(S \) with any line is convex. Take any two distinct points \(x_1 \) and \(x_2 \in S \). The intersection of \(S \) with the line through \(x_1 \) and \(x_2 \) is convex. Therefore convex combinations of \(x_1 \) and \(x_2 \) belong to the intersection, hence also to \(S \).

2.5 What is the distance between two parallel hyperplanes \(\{x \in \mathbb{R}^n \mid a^T x = b_1\} \) and \(\{x \in \mathbb{R}^n \mid a^T x = b_2\} \)?

Solution. The distance between the two hyperplanes is \(|b_1 - b_2|/\|a\|_2 \). To see this, consider the construction in the figure below.
The distance between the two hyperplanes is also the distance between the two points x_1 and x_2 where the hyperplane intersects the line through the origin and parallel to the normal vector a. These points are given by

$$x_1 = (b_1/\|a\|_2^2) a, \quad x_2 = (b_2/\|a\|_2^2) a,$$

and the distance is

$$\|x_1 - x_2\|_2 = |b_1 - b_2|/\|a\|_2.$$
\(S = \{x \in \mathbb{R}^n \mid x \succeq 0, \ x^T y \leq 1 \ \text{for all} \ y \ \text{with} \ \|y\|_2 = 1\} \).

\(S = \{x \in \mathbb{R}^n \mid x \succeq 0, \ x^T y \leq 1 \ \text{for all} \ y \ \text{with} \ \sum_{i=1}^{n} |y_i| = 1\} \).

Solution.

(a) \(S \) is a polyhedron. It is the parallelogram with corners \(a_1 + a_2, a_1 - a_2, -a_1 + a_2, -a_1 - a_2 \), as shown below for an example in \(\mathbb{R}^2 \).

For simplicity we assume that \(a_1 \) and \(a_2 \) are independent. We can express \(S \) as the intersection of three sets:

- \(S_1 \): the plane defined by \(a_1 \) and \(a_2 \)
- \(S_2 = \{z + y_1 a_1 + y_2 a_2 \mid a_1^T z = a_2^T z = 0, -1 \leq y_1 \leq 1\} \). This is a slab parallel to \(a_2 \) and orthogonal to \(S_1 \)
- \(S_3 = \{z + y_1 a_1 + y_2 a_2 \mid a_1^T z = a_2^T z = 0, -1 \leq y_2 \leq 1\} \). This is a slab parallel to \(a_1 \) and orthogonal to \(S_1 \)

Each of these sets can be described with linear inequalities.

- \(S_1 \) can be described as
 \[v_k^T x = 0, \ \ k = 1, \ldots, n - 2 \]
 where \(v_k \) are \(n - 2 \) independent vectors that are orthogonal to \(a_1 \) and \(a_2 \) (which form a basis for the nullspace of the matrix \([a_1 \ a_2]^T\)).

- Let \(c_1 \) be a vector in the plane defined by \(a_1 \) and \(a_2 \), and orthogonal to \(a_2 \). For example, we can take
 \[c_1 = a_1 - \frac{a_1^T a_2}{\|a_2\|_2^2} a_2. \]

Then \(x \in S_2 \) if and only if

\[-|c_1^T a_1| \leq c_1^T x \leq |c_1^T a_1|. \]
• Similarly, let \(c_2 \) be a vector in the plane defined by \(a_1 \) and \(a_2 \), and orthogonal to \(a_1 \), e.g.,

\[
c_2 = a_2 - \frac{a_2^T a_1}{\|a_1\|_2^2} a_1.
\]

Then \(x \in S_3 \) if and only if

\[
-|c_2^T a_2| \leq c_2^T x \leq |c_2^T a_2|.
\]

Putting it all together, we can describe \(S \) as the solution set of \(2n \) linear inequalities

\[
\begin{align*}
v_k^T x & \leq 0, \quad k = 1, \ldots, n-2 \\
-v_k^T x & \leq 0, \quad k = 1, \ldots, n-2 \\
c_1^T x & \leq |c_1^T a_2| \\
-c_1^T x & \leq |c_1^T a_1| \\
c_2^T x & \leq |c_2^T a_2| \\
-c_2^T x & \leq |c_2^T a_2|.
\end{align*}
\]

(b) \(S \) is a polyhedron, defined by linear inequalities \(x_k \geq 0 \) and three equality constraints.

(c) \(S \) is not a polyhedron. It is the intersection of the unit ball \(\{x \mid \|x\|_2 \leq 1\} \) and the nonnegative orthant \(\mathbb{R}^n_+ \). This follows from the following fact, which follows from the Cauchy-Schwarz inequality:

\[
x^T y \leq 1 \text{ for all } y \text{ with } \|y\|_2 = 1 \iff \|x\|_2 \leq 1.
\]

Although in this example we define \(S \) as an intersection of halfspaces, it is not a polyhedron, because the definition requires infinitely many halfspaces.

(d) \(S \) is a polyhedron. \(S \) is the intersection of the set \(\{x \mid |x_k| \leq 1, \quad k = 1, \ldots, n\} \) and the nonnegative orthant \(\mathbb{R}^n_+ \). This follows from the following fact:

\[
x^T y \leq 1 \text{ for all } y \text{ with } \sum_{i=1}^n |y_i| = 1 \iff |x_i| \leq 1, \quad i = 1, \ldots, n.
\]

We can prove this as follows. First suppose that \(|x_i| \leq 1 \) for all \(i \). Then

\[
x^T y = \sum_i x_i y_i \leq \sum_i |x_i| |y_i| \leq \sum_i |y_i| = 1
\]

if \(\sum_i |y_i| = 1 \).

Conversely, suppose that \(x \) is a nonzero vector that satisfies \(x^T y \leq 1 \) for all \(y \) with \(\sum_i |y_i| = 1 \). In particular we can make the following choice for \(y \): let \(k \) be an index for which \(|x_k| = \max_i |x_i| \), and take \(y_k = 1 \) if \(x_k > 0 \), \(y_k = -1 \) if \(x_k < 0 \), and \(y_i = 0 \) for \(i \neq k \). With this choice of \(y \) we have

\[
x^T y = \sum_i x_i y_i = y_k x_k = |x_k| = \max_i |x_i|.
\]
Therefore we must have \(\max_i |x_i| \leq 1 \).

All this implies that we can describe \(S \) by a finite number of linear inequalities: it is the intersection of the nonnegative orthant with the set \(\{ x \mid -1 \leq x \leq 1 \} \), \(i.e., \) the solution of \(2n \) linear inequalities

\[
-x_i \leq 0, \ i = 1, \ldots, n \\
x_i \leq 1, \ i = 1, \ldots, n.
\]

Note that as in part (c) the set \(S \) was given as an intersection of an infinite number of halfspaces. The difference is that here most of the linear inequalities are redundant, and only a finite number are needed to characterize \(S \).

None of these sets are affine sets or subspaces, except in some trivial cases. For example, the set defined in part (a) is a subspace (hence an affine set), if \(a_1 = a_2 = 0 \); the set defined in part (b) is an affine set if \(n = 1 \) and \(S = \{1\} \); etc.

2.11 Hyperbolic sets.

Show that the hyperbolic set \(\{ x \in \mathbb{R}^2_+ \mid x_1 x_2 \geq 1 \} \) is convex. As a generalization, show that \(\{ x \in \mathbb{R}^n_+ \mid \prod_{i=1}^n x_i \geq 1 \} \) is convex. \(Hint. \) If \(a, b \geq 0 \) and \(0 \leq \theta \leq 1 \), then \(a^\theta b^{1-\theta} \leq \theta a + (1-\theta)b \); see \S\ 3.1.9.

Solution.

(a) We prove the first part without using the hint. Consider a convex combination \(z \) of two points \((x_1, x_2) \) and \((y_1, y_2) \) in the set. If \(x \geq y \), then \(z = \theta x + (1-\theta)y \geq y \) and obviously \(z_1 z_2 \geq y_1 y_2 \geq 1 \). Similar proof if \(y \geq x \).

Suppose \(y \not\geq x \) and \(x \not\geq y \), \(i.e., \) \((y_1 - x_1)(y_2 - x_2) < 0 \). Then

\[
(\theta x_1 + (1-\theta)y_1)(\theta x_2 + (1-\theta)y_2) = \theta^2 x_1 x_2 + (1-\theta)^2 y_1 y_2 + \theta(1-\theta)x_1 y_2 + \theta(1-\theta)x_2 y_1 \\
= \theta x_1 x_2 + (1-\theta)y_1 y_2 - \theta(1-\theta)(y_1 - x_1)(y_2 - x_2) \\
\geq 1.
\]

(b) Assume that \(\prod_i x_i \geq 1 \) and \(\prod_i y_i \geq 1 \). Using the inequality in the hint, we have

\[
\prod_i (\theta x_i + (1-\theta)y_i) \geq \prod_i x_i^\theta y_i^{1-\theta} = (\prod_i x_i)^\theta(\prod_i y_i)^{1-\theta} \geq 1.
\]

2.12 Which of the following sets are convex?

(a) A slab, \(i.e., \) a set of the form \(\{ x \in \mathbb{R}^n \mid \alpha \leq a^T x \leq \beta \} \).

(b) A rectangle, \(i.e., \) a set of the form \(\{ x \in \mathbb{R}^n \mid \alpha_i \leq x_i \leq \beta_i, \ i = 1, \ldots, n \} \). A rectangle is sometimes called a hyperrectangle when \(n > 2 \).

(c) A wedge, \(i.e., \) \(\{ x \in \mathbb{R}^n \mid a_1^T x \leq b_1, \ a_2^T x \leq b_2 \} \).
(d) The set of points closer to a given point than a given set, i.e.,

\[\{x \mid \|x - x_0\|_2 \leq \|x - y\|_2 \text{ for all } y \in S\} \]

where \(S \subseteq \mathbb{R}^n \).

(e) The set of points closer to one set than another, i.e.,

\[\{x \mid \text{dist}(x, S) \leq \text{dist}(x, T)\} \]

where \(S, T \subseteq \mathbb{R}^n \), and

\[\text{dist}(x, S) = \inf\{\|x - z\|_2 \mid z \in S\}. \]

(f) The set \(\{x \mid x + S_2 \subseteq S_1\} \), where \(S_1, S_2 \subseteq \mathbb{R}^n \) with \(S_1 \) convex.

(g) The set of points whose distance to \(a \) does not exceed a fixed fraction \(\theta \) of the distance to \(b \), i.e., the set \(\{x \mid \|x - a\|_2 \leq \theta \|x - b\|_2\} \). You can assume \(a \neq b \) and \(0 \leq \theta \leq 1 \).

Solution.

(a) A slab is an intersection of two halfspaces, hence it is a convex set and a polyhedron.

(b) As in part (a), a rectangle is a convex set and a polyhedron because it is a finite intersection of halfspaces.

(c) A wedge is an intersection of two halfspaces, so it is convex and a polyhedron. It is a cone if \(b_1 = 0 \) and \(b_2 = 0 \).

(d) This set is convex because it can be expressed as

\[\bigcap_{y \in S} \{x \mid \|x - x_0\|_2 \leq \|x - y\|_2\}, \]

i.e., an intersection of halfspaces. (Recall from exercise 2.7 that, for fixed \(y \), the set

\[\{x \mid \|x - x_0\|_2 \leq \|x - y\|_2\} \]

is a halfspace.)

(e) In general this set is not convex, as the following example in \(\mathbb{R} \) shows. With \(S = \{-1, 1\} \) and \(T = \{0\} \), we have

\[\{x \mid \text{dist}(x, S) \leq \text{dist}(x, T)\} = \{x \in \mathbb{R} \mid x \leq -1/2 \text{ or } x \geq 1/2\} \]

which clearly is not convex.
This set is convex. \(x + S_2 \subseteq S_1 \) if \(x + y \in S_1 \) for all \(y \in S_2 \). Therefore

\[
\{ x | x + S_2 \subseteq S_1 \} = \bigcap_{y \in S_2} \{ x | x + y \in S_1 \} = \bigcap_{y \in S_2} (S_1 - y),
\]

the intersection of convex sets \(S_1 - y \).

The set is convex, in fact a ball.

\[
\{ x | \| x - a \|_2 \leq \theta \| x - b \|_2 \}
= \{ x | \| x - a \|_2^2 \leq \theta^2 \| x - b \|_2^2 \}
= \{ x | (1 - \theta^2)x^T x - 2(a - \theta^2 b)^T x + (a^T a - \theta^2 b^T b) \leq 0 \}
\]

If \(\theta = 1 \), this is a halfspace. If \(\theta < 1 \), it is a ball

\[
\{ x | (x - x_0)^T (x - x_0) \leq R^2 \},
\]

with center \(x_0 \) and radius \(R \) given by

\[
x_0 = \frac{a - \theta^2 b}{1 - \theta^2}, \quad R = \left(\frac{\theta^2 \| b \|_2^2 - \| a \|_2^2}{1 - \theta^2} + \| x_0 \|_2^2 \right)^{1/2}.
\]

2.15 Some sets of probability distributions. Let \(x \) be a real-valued random variable with \(\text{prob}(x = a_i) = p_i, i = 1, \ldots, n \), where \(a_1 < a_2 < \cdots < a_n \). Of course \(p \in \mathbb{R}^n \) lies in the standard probability simplex \(P = \{ p | 1^T p = 1, p \geq 0 \} \). Which of the following conditions are convex in \(p \)? (That is, for which of the following conditions is the set of \(p \in P \) that satisfy the condition convex?)

(a) \(\alpha \leq \mathbb{E} f(x) \leq \beta \), where \(\mathbb{E} f(x) \) is the expected value of \(f(x) \), i.e., \(\mathbb{E} f(x) = \sum_{i=1}^{n} p_i f(a_i) \). (The function \(f : \mathbb{R} \to \mathbb{R} \) is given.)

(b) \(\text{prob}(x > \alpha) \leq \beta \).

(c) \(\mathbb{E} |x^3| \leq \alpha \mathbb{E} |x| \).

(d) \(\mathbb{E} x^2 \leq \alpha \).

(e) \(\mathbb{E} x^2 \geq \alpha \).

(f) \(\text{var}(x) \leq \alpha \), where \(\text{var}(x) = \mathbb{E}(x - \mathbb{E} x)^2 \) is the variance of \(x \).

(g) \(\text{var}(x) \geq \alpha \).

(h) \(\text{quartile}(x) \geq \alpha \), where \(\text{quartile}(x) = \inf\{ \beta | \text{prob}(x \leq \beta) \geq 0.25 \} \).

(i) \(\text{quartile}(x) \leq \alpha \).

Solution. We first note that the constraints \(p_i \geq 0, i = 1, \ldots, n \), define halfspaces, and \(\sum_{i=1}^{n} p_i = 1 \) defines a hyperplane, so \(P \) is a polyhedron.

The first five constraints are, in fact, linear inequalities in the probabilities \(p_i \).
(a) \(E f(x) = \sum_{i=1}^{n} p_i f(a_i) \), so the constraint is equivalent to two linear inequalities
\[
\alpha \leq \sum_{i=1}^{n} p_i f(a_i) \leq \beta.
\]

(b) \(\text{prob}(x \geq \alpha) = \sum_{i: a_i \geq \alpha} p_i \), so the constraint is equivalent to a linear inequality
\[
\sum_{i: a_i \geq \alpha} p_i \leq \beta.
\]

(c) The constraint is equivalent to a linear inequality
\[
\sum_{i=1}^{n} p_i (|a_i^2| - \alpha |a_i|) \leq 0.
\]

(d) The constraint is equivalent to a linear inequality
\[
\sum_{i=1}^{n} p_i a_i^2 \leq \alpha.
\]

(e) The constraint is equivalent to a linear inequality
\[
\sum_{i=1}^{n} p_i a_i^2 \geq \alpha.
\]

The first five constraints therefore define convex sets.

(f) The constraint
\[
\text{var}(x) = E x^2 - (E x)^2 = \sum_{i=1}^{n} p_i a_i^2 - (\sum_{i=1}^{n} p_i a_i)^2 \leq \alpha
\]

is not convex in general. As a counterexample, we can take \(n = 2, a_1 = 0, a_2 = 1, \) and \(\alpha = 1/5 \). \(p = (1,0) \) and \(p = (0,1) \) are two points that satisfy \(\text{var}(x) \leq \alpha \), but the convex combination \(p = (1/2, 1/2) \) does not.

(g) This constraint is equivalent to
\[
\sum_{i=1}^{n} a_i^2 p_i + (\sum_{i=1}^{n} a_i p_i)^2 = b^T p + p^T A p \leq \alpha
\]

where \(b_i = a_i^2 \) and \(A = aa^T \). This defines a convex set, since the matrix \(aa^T \) is positive semidefinite.

Let us denote \(\text{quartile}(x) = f(p) \) to emphasize it is a function of \(p \). The figure illustrates the definition. It shows the cumulative distribution for a distribution \(p \) with \(f(p) = a_2 \).
(h) The constraint $f(p) \geq \alpha$ is equivalent to

$$\text{prob}(x \leq \beta) < 0.25 \text{ for all } \beta < \alpha.$$

If $\alpha \leq a_1$, this is always true. Otherwise, define $k = \max\{i \mid a_i < \alpha\}$. This is a fixed integer, independent of p. The constraint $f(p) \geq \alpha$ holds if and only if

$$\text{prob}(x \leq a_k) = \sum_{i=1}^{k} p_i < 0.25.$$

This is a strict linear inequality in p, which defines an open halfspace.

(i) The constraint $f(p) \leq \alpha$ is equivalent to

$$\text{prob}(x \leq \beta) \geq 0.25 \text{ for all } \beta \geq \alpha.$$

Here, let us define $k = \max\{i \mid a_i \leq \alpha\}$. Again, this is a fixed integer, independent of p. The constraint $f(p) \leq \alpha$ holds if and only if

$$\text{prob}(x \leq a_k) = \sum_{i=1}^{k} p_i \geq 0.25.$$

If $\alpha \leq a_1$, then no p satisfies $f(p) \leq \alpha$, which means that the set is empty.