
EE364a, Winter 2007–08 Prof. S. Boyd

EE364a Homework 3 additional problems

1. Optimal activity levels. Solve the optimal activity level problem described in exercise
4.17 in Convex Optimization, for the instance with problem data
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You can do this by forming the LP you found in your solution of exercise 4.17, using
cvx to solve the LP, or more directly, using cvx functions. (You can even implement
both solutions, if you like; this would serve as a check of your solution to problem
4.17.)

Give the optimal activity levels, the revenue generated by each one, and the total
revenue generated by the optimal solution. Also, give the average price per unit for
each activity level, i.e., the ratio of the revenue associated with an activity, to the
activity level. (These numbers should be between the basic and discounted prices for
each activity.) Give a very brief story explaining, or at least commenting on, the
solution you find.

2. Reformulating constraints in cvx. Each of the following cvx code fragments describes
a convex constraint on the scalar variables x, y, and z, but violates the cvx rule set,
and so is invalid. Briefly explain why each fragment is invalid. Then, rewrite each one
in an equivalent form that conforms to the cvx rule set. In your reformulations, you
can use linear equality and inequality constraints, and inequalities constructed using
cvx functions. You can also introduce additional variables, or use LMIs. Be sure to
explain (briefly) why your reformulation is equivalent to the original constraint, if it is
not obvious.

Check your reformulations by creating a small problem that includes these constraints,
and solving it using cvx. Your test problem doesn’t have to be feasible; it’s enough to
verify that cvx processes your constraints without error.

Remark. This looks like a problem about ‘how to use cvx software’, or ‘tricks for
using cvx’. But it really checks whether you understand the various composition rules,
convex analysis, and constraint reformulation rules.

(a) norm( [ x + 2*y , x - y ] ) == 0

(b) square( square( x + y ) ) <= x - y

(c) 1/x + 1/y <= 1; x >= 0; y >= 0
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(d) norm([ max( x , 1 ) , max( y , 2 ) ]) <= 3*x + y

(e) x*y >= 1; x >= 0; y >= 0

(f) ( x + y )^2 / sqrt( y ) <= x - y + 5

(g) x^3 + y^3 <= 1; x>=0; y>=0

(h) x+z <= 1+sqrt(x*y-z^2); x>=0; y>=0

3. The illumination problem. This exercise concerns the illumination problem described
in lecture 1 (pages 9–11). We’ll take Ides = 1 and pmax = 1, so the problem is

minimize f0(p) = maxk=1,...,n | log(aT
k p)|

subject to 0 ≤ pj ≤ 1, j = 1, . . . ,m,
(1)

with variable p ∈ Rn. You will compute several approximate solutions, and compare
the results to the exact solution, for a specific problem instance.

As mentioned in the lecture, the problem is equivalent to

minimize maxk=1,...,n h(aT
k p)

subject to 0 ≤ pj ≤ 1, j = 1, . . . ,m,
(2)

where h(u) = max{u, 1/u} for u > 0. The function h, shown in the figure below, is
nonlinear, nondifferentiable, and convex. To see the equivalence between (1) and (2),
we note that

f0(p) = max
k=1,...,n

| log(aT
k p)|

= max
k=1,...,n

max{log(aT
k p), log(1/aT

k p)}

= log max
k=1,...,n

max{aT
k p, 1/aT

k p}

= log max
k=1,...,n

h(aT
k p),

and since the logarithm is a monotonically increasing function, minimizing f0 is equiv-
alent to minimizing maxk=1,...,n h(aT

k p).
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The problem instance. The specific problem data are for the geometry shown
below, using the formula

akj = r−2

kj max{cos θkj, 0}

from the lecture. There are 10 lamps (m = 10) and 20 patches (n = 20). We take
Ides = 1 and pmax = 1. The problem data are given in the file illum_data.m on the
course website. Running this script will construct the matrix A (which has rows aT

k ),
and plot the lamp/patch geometry as shown below.
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Equal lamp powers. Take pj = γ for j = 1, . . . ,m. Plot f0(p) versus γ over
the interval [0, 1]. Graphically determine the optimal value of γ, and the associated
objective value.

You can evaluate the objective function f0(p) in Matlab as max(abs(log(A*p))).

Least-squares with saturation. Solve the least-squares problem

minimize
∑n

k=1
(aT

k p − 1)2 = ‖Ap − 1‖2

2
.

If the solution has negative values for some pi, set them to zero; if some values are
greater than 1, set them to 1. Give the resulting value of f0(p).

Least-squares solutions can be computed using the Matlab backslash operator: A\b

returns the solution of the least-squares problem

minimize ‖Ax − b‖2

2
.

Regularized least-squares. Solve the regularized least-squares problem

minimize
∑n

k=1
(aT

k p − 1)2 + ρ
∑m

j=1
(pj − 0.5)2 = ‖Ap − 1‖2

2
+ ρ‖p − (1/2)1‖2

2
,
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where ρ > 0 is a parameter. Increase ρ until all coefficients of p are in the interval
[0, 1]. Give the resulting value of f0(p).

You can use the backslash operator in Matlab to solve the regularized least-squares
problem.

Chebyshev approximation. Solve the problem

minimize maxk=1,...,n |a
T
k p − 1| = ‖Ap − 1‖∞

subject to 0 ≤ pj ≤ 1, j = 1, . . . ,m.

We can think of this problem as obtained by approximating the nonlinear function
h(u) by a piecewise-linear function |u − 1| + 1. As shown in the figure below, this is a
good approximation around u = 1.
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You can solve the Chebyshev approximation problem using cvx. The (convex) function
‖Ap− 1‖∞ can be expressed in cvx as norm(A*p-ones(n,1),inf). Give the resulting
value of f0(p).

Exact solution. Finally, use cvx to solve

minimize maxk=1,...,n max(aT
k p, 1/aT

k p)
subject to 0 ≤ pj ≤ 1, j = 1, . . . ,m

exactly. You may find the inv_pos() function useful. Give the resulting (optimal)
value of f0(p).
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