Disciplined Convex Programming and CVX

- convex optimization solvers
- modeling systems
- disciplined convex programming
- CVX
Convex optimization solvers

- **LP solvers**
 - lots available (GLPK, Excel, Matlab’s `linprog`, . . .)

- **cone solvers**
 - typically handle (combinations of) LP, SOCP, SDP cones
 - several available (SDPT3, SeDuMi, CSDP, . . .)

- **general convex solvers**
 - some available (CVXOPT, MOSEK, . . .)

- plus lots of special purpose or application specific solvers

- could write your own

(we’ll study, and write, solvers later in the quarter)
Transforming problems to standard form

• you’ve seen lots of tricks for transforming a problem into an equivalent one that has a standard form (e.g., LP, SDP)

• these tricks greatly extend the applicability of standard solvers

• writing code to carry out this transformation is often painful

• **modeling systems** can partly automate this step
Modeling systems

a typical modeling system

• automates most of the transformation to standard form; supports
 – declaring optimization variables
 – describing the objective function
 – describing the constraints
 – choosing (and configuring) the solver

• when given a problem instance, calls the solver

• interprets and returns the solver’s status (optimal, infeasible, . . .)

• (when solved) transforms the solution back to original form
Some current modeling systems

- AMPL & GAMS (proprietary)
 - developed in the 1980s, still widely used in traditional OR
 - no support for convex optimization

- YALMIP (‘Yet Another LMI Parser’)
 - first matlab-based object-oriented modeling system with special support for convex optimization
 - can use many different solvers; can handle some nonconvex problems

- CVXMOD/CVXOPT (in alpha)
 - python based, completely GPLed
 - cone and custom solvers

- CVX
 - matlab based, GPL, uses SDPT3/SeDuMi
Disciplined convex programming

- describe objective and constraints using expressions formed from
 - a set of basic atoms (convex, concave functions)
 - a restricted set of operations or rules (that preserve convexity)

- modeling system keeps track of affine, convex, concave expressions

- rules ensure that
 - expressions recognized as convex (concave) are convex (concave)
 - but, some convex (concave) expressions are not recognized as convex (concave)

- problems described using DCP are convex by construction
CVX

- uses DCP
- runs in Matlab, between the `cvx_begin` and `cvx_end` commands
- relies on SDPT3 or SeDuMi (LP/SOCP/SDP) solvers
- refer to user guide, online help for more info
- the CVX example library has more than a hundred examples
Example: Constrained norm minimization

A = randn(5, 3);
b = randn(5, 1);
cvx_begin
 variable x(3);
 minimize(norm(A*x - b, 1))
 subject to
 -0.5 <= x;
 x <= 0.3;
cvx_end

• between cvx_begin and cvx_end, x is a CVX variable
• statement subject to does nothing, but can be added for readability
• inequalities are interpreted elementwise
What CVX does

after cvx_end, CVX

• transforms problem into an LP
• calls solver SDPT3
• overwrites (object) x with (numeric) optimal value
• assigns problem optimal value to cvx_optval
• assigns problem status (which here is Solved) to cvx_status

(had problem been infeasible, cvx_status would be Infeasible and x would be NaN)
Variables and affine expressions

- declare variables with variable name[(dims)] [attributes]
 - variable x(3);
 - variable C(4,3);
 - variable S(3,3) symmetric;
 - variable D(3,3) diagonal;
 - variables y z;

- form affine expressions
 - A = randn(4, 3);
 - variables x(3) y(4);
 - 3*x + 4
 - A*x - y
 - x(2:3)
 - sum(x)
Some functions

<table>
<thead>
<tr>
<th>function</th>
<th>meaning</th>
<th>attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>norm(x, p)</code></td>
<td>$|x|_p$</td>
<td>cvx</td>
</tr>
<tr>
<td><code>square(x)</code></td>
<td>x^2</td>
<td>cvx</td>
</tr>
<tr>
<td><code>square_pos(x)</code></td>
<td>$(x_+)^2$</td>
<td>cvx, nondecr</td>
</tr>
<tr>
<td><code>pos(x)</code></td>
<td>x_+</td>
<td>cvx, nondecr</td>
</tr>
<tr>
<td><code>sum_largest(x,k)</code></td>
<td>$x[1] + \cdots + x[k]$</td>
<td>cvx, nondecr</td>
</tr>
<tr>
<td><code>sqrt(x)</code></td>
<td>\sqrt{x} ($x \geq 0$)</td>
<td>ccv, nondecr</td>
</tr>
<tr>
<td><code>inv_pos(x)</code></td>
<td>$1/x$ ($x > 0$)</td>
<td>cvx, nonincr</td>
</tr>
<tr>
<td><code>max(x)</code></td>
<td>$\max{x_1, \ldots, x_n}$</td>
<td>cvx, nondecr</td>
</tr>
<tr>
<td><code>quad_over_lin(x,y)</code></td>
<td>x^2/y ($y > 0$)</td>
<td>cvx, nonincr in y</td>
</tr>
<tr>
<td><code>lambda_max(X)</code></td>
<td>$\lambda_{\max}(X)$ ($X = X^T$)</td>
<td>cvx</td>
</tr>
<tr>
<td><code>huber(x)</code></td>
<td>$\begin{cases} x^2, &</td>
<td>x</td>
</tr>
</tbody>
</table>
Composition rules

• can combine atoms using valid composition rules, *e.g.*:
 – a convex function of an affine function is convex
 – the negative of a convex function is concave
 – a convex, nondecreasing function of a convex function is convex
 – a concave, nondecreasing function of a concave function is concave

• for convex h, $h(g_1, \ldots, g_k)$ is recognized as convex if, for each i,
 – g_i is affine, or
 – g_i is convex and h is nondecreasing in its ith arg, or
 – g_i is concave and h is nonincreasing in its ith arg

• for concave h, $h(g_1, \ldots, g_k)$ is recognized as concave if, for each i,
 – g_i is affine, or
 – g_i is convex and h is nonincreasing in ith arg, or
 – g_i is concave and h is nondecreasing in ith arg
Valid (recognized) examples

u, v, x, y are scalar variables; X is a symmetric 3 × 3 variable

• convex:
 - norm(A*x - y) + 0.1*norm(x, 1)
 - quad_over_lin(u - v, 1 - square(v))
 - lambda_max(2*X - 4*eye(3))
 - norm(2*X - 3, 'fro')

• concave:
 - min(1 + 2*u, 1 - max(2, v))
 - sqrt(v) - 4.55*inv_pos(u - v)
Rejected examples

u, v, x, y are scalar variables

- neither convex nor concave:
 - \(\text{square}(x) - \text{square}(y)\)
 - \(\text{norm}(A*x - y) - 0.1*\text{norm}(x, 1)\)

- rejected due to limited DCP ruleset:
 - \(\sqrt{\text{sum} (\text{square}(x))}\) (is convex; could use \(\text{norm}(x)\))
 - \(\text{square}(1 + x^2)\) (is convex; could use \(\text{square_pos}(1 + x^2)\), or \(1 + 2*\text{pow_pos}(x, 2) + \text{pow_pos}(x, 4)\))
Sets

• some constraints are more naturally expressed with convex sets

• sets in CVX work by creating unnamed variables constrained to the set

• examples:
 - semidefinite(n)
 - nonnegative(n)
 - simplex(n)
 - lorentz(n)

• semidefinite(n), say, returns an unnamed (symmetric matrix) variable that is constrained to be positive semidefinite
Using the semidefinite cone

variables: \(X\) (symmetric matrix), \(z\) (vector), \(t\) (scalar)
constants: \(A\) and \(B\) (matrices)

- \(X == \text{semidefinite}(n)\)
 - means \(X \in S_n^+\) (or \(X \succeq 0\))

- \(A*X*A' - X == B*\text{semidefinite}(n)*B'\)
 - means \(\exists Z \succeq 0\) so that \(AXA^T - X = BZB^T\)

- \([X \ z; \ z^T \ t] == \text{semidefinite}(n+1)\)
 - means \[
 \begin{bmatrix}
 X & z \\
 z^T & t
 \end{bmatrix} \succeq 0
 \]
Objectives and constraints

• **Objective** can be
 - minimize(convex expression)
 - maximize(concave expression)
 - omitted (feasibility problem)

• **Constraints** can be
 - convex expression <= concave expression
 - concave expression >= convex expression
 - affine expression == affine expression
 - omitted (unconstrained problem)
More involved example

A = randn(5);
A = A’*A;
cvx_begin
variable X(5, 5) symmetric;
variable y;
minimize(norm(X) - 10*sqrt(y))
subject to
 X - A == semidefinite(5);
 X(2,5) == 2*y;
 X(3,1) >= 0.8;
 y <= 4;
cvx_end
Defining new functions

- can make a new function using existing atoms

- **example:** the convex deadzone function

\[
 f(x) = \max\{|x| - 1, 0\} = \begin{cases}
 0, & |x| \leq 1 \\
 x - 1, & x > 1 \\
 1 - x, & x < -1
\end{cases}
\]

- create a file `deadzone.m` with the code

```matlab
function y = deadzone(x)
    y = max(abs(x) - 1, 0)
end
```

- `deadzone` makes sense both within and outside of CVX
Defining functions via incompletely specified problems

- suppose f_0, \ldots, f_m are convex in (x,z)

- let $\phi(x)$ be optimal value of convex problem, with variable z and parameter x

 minimize $f_0(x,z)$

 subject to $f_i(x,z) \leq 0, \; i = 1, \ldots, m$

 $A_1x + A_2z = b$

- ϕ is a convex function

- problem above sometimes called *incompletely specified* since x isn’t (yet) given

- an incompletely specified concave maximization problem defines a concave function
CVX functions via incompletely specified problems

implement in cvx with

function cvx_optval = phi(x)
cvx_begin
 variable z;
 minimize(f0(x, z))
 subject to
 f1(x, z) <= 0; ...
 A1*x + A2*z == b;
cvx_end

• function phi will work for numeric x (by solving the problem)

• function phi can also be used inside a CVX specification, wherever a convex function can be used
Simple example: Two element max

• create file max2.m containing

```matlab
function cvx_optval = max2(x, y)
cvx_begin
    variable t;
    minimize(t)
    subject to
        x <= t;
        y <= t;
    cvx_end
```

• the constraints define the epigraph of the max function

• could add logic to return \(\max(x,y)\) when \(x, y\) are numeric
 (otherwise, an LP is solved to evaluate the max of two numbers!)
A more complex example

- \(f(x) = x + x^{1.5} + x^{2.5} \), with \(\text{dom } f = \mathbb{R}_+ \), is a convex, monotone increasing function

- its inverse \(g = f^{-1} \) is concave, monotone increasing, with \(\text{dom } g = \mathbb{R}_+ \)

- there is no closed form expression for \(g \)

- \(g(y) \) is optimal value of problem

\[
\begin{align*}
&\text{maximize} \quad t \\
&\text{subject to} \quad t_+ + t_+^{1.5} + t_+^{2.5} \leq y \\
\end{align*}
\]

(for \(y < 0 \), this problem is infeasible, so optimal value is \(-\infty\))
• implement as

```matlab
function cvx_optval = g(y)
cvx_begin
  variable t;
  maximize(t)
  subject to
    pos(t) + pow_pos(t, 1.5) + pow_pos(t, 2.5) <= y;
cvx_end
```

• use it as an ordinary function, as in $g(14.3)$, or within CVX as a concave function:

```matlab
cvx_begin
  variables x y;
  minimize(quad_over_lin(x, y) + 4*x + 5*y)
  subject to
    g(x) + 2*g(y) >= 2;
cvx_end
```
Example

- optimal value of LP, \(f(c) = \inf \{ c^T x \mid Ax \preceq b \} \), is concave function of \(c \)
- by duality (assuming feasibility of \(Ax \preceq b \)) we have
 \[
 f(c) = \sup \{-\lambda^T b \mid A^T \lambda + c = 0, \lambda \succeq 0 \}
 \]
- define \(f \) in CVX as

  ```
  function cvx_optval = lp_opt_val(A,b,c)
  cvx_begin
   variable lambda(length(b));
   maximize(-lambda'*b);
   subject to
    A'*lambda + c == 0; lambda >= 0;
  cvx_end
  ```

- in \(\text{lp_opt_val}(A,b,c) \) \(A, b \) must be constant; \(c \) can be affine expression
CVX hints/warnings

• watch out for = (assignment) versus == (equality constraint)

• $X \geq 0$, with matrix X, is an elementwise inequality

• $X \geq \text{semidefinite}(n)$ means: X is elementwise larger than some positive semidefinite matrix (which is likely not what you want)

• writing subject to is unnecessary (but can look nicer)

• make sure you include brackets around objective functions
 - yes: minimize($c'x$)
 - no: minimize $c'x$

• double inequalities like $0 \leq x \leq 1$ don’t work; use $0 \leq x; x \leq 1$ instead

• log, exp, entropy-type functions not yet implemented in CVX