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1 Definition

We say a vector g ∈ Rn is a subgradient of f : Rn → R at x ∈ dom f if for all z ∈ dom f ,

f(z) ≥ f(x) + gT (z − x). (1)

If f is convex and differentiable, then its gradient at x is a subgradient. But a subgradient
can exist even when f is not differentiable at x, as illustrated in figure 1. The same example
shows that there can be more than one subgradient of a function f at a point x.

There are several ways to interpret a subgradient. A vector g is a subgradient of f at x
if the affine function (of z) f(x) + gT (z − x) is a global underestimator of f . Geometrically,
g is a subgradient of f at x if (g,−1) supports epi f at (x, f(x)), as illustrated in figure 2.

A function f is called subdifferentiable at x if there exists at least one subgradient at
x. The set of subgradients of f at the point x is called the subdifferential of f at x, and
is denoted ∂f(x). A function f is called subdifferentiable if it is subdifferentiable at all
x ∈ dom f .

Example. Absolute value. Consider f(z) = |z|. For x < 0 the subgradient is unique:

∂f(x) = {−1}. Similarly, for x > 0 we have ∂f(x) = {1}. At x = 0 the subdifferential

is defined by the inequality |z| ≥ gz for all z, which is satisfied if and only if g ∈ [−1, 1].

Therefore we have ∂f(0) = [−1, 1]. This is illustrated in figure 3.

2 Basic properties

The subdifferential ∂f(x) is always a closed convex set, even if f is not convex. This follows
from the fact that it is the intersection of an infinite set of halfspaces:

∂f(x) =
⋂

z∈dom f

{g | f(z) ≥ f(x) + gT (z − x)}.

1



x1 x2

f(x1) + gT
1 (z − x1)

f(x2) + gT
2 (z − x2)

f(x2) + gT
3 (z − x2)

f(z)

Figure 1: At x1, the convex function f is differentiable, and g1 (which is the
derivative of f at x1) is the unique subgradient at x1. At the point x2, f is not
differentiable. At this point, f has many subgradients: two subgradients, g2 and g3,
are shown.

epi f

(g,−1)

Figure 2: A vector g ∈ Rn is a subgradient of f at x if and only if (g,−1) defines
a supporting hyperplane to epi f at (x, f(x)).

f(z) = |z| ∂f(x)
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Figure 3: The absolute value function (left), and its subdifferential ∂f(x) as a
function of x (right).
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2.1 Existence of subgradients

If f is convex and x ∈ int dom f , then ∂f(x) is nonempty and bounded. To establish that
∂f(x) 6= ∅, we apply the supporting hyperplane theorem to the convex set epi f at the
boundary point (x, f(x)), to conclude the existence of a ∈ Rn and b ∈ R, not both zero,
such that

[

a
b

]T ([

z
t

]

−

[

x
f(x)

])

= aT (z − x) + b(t − f(x)) ≤ 0

for all (z, t) ∈ epi f . This implies b ≤ 0, and that

aT (z − x) + b(f(z) − f(x)) ≤ 0

for all z. If b 6= 0, we can divide by b to obtain

f(z) ≥ f(x) − (a/b)T (z − x),

which shows that −a/b ∈ ∂f(x). Now we show that b 6= 0, i.e., that the supporting
hyperplane cannot be vertical. If b = 0 we conclude that aT (z − x) ≤ 0 for all z ∈ dom f .
This is impossible since x ∈ int dom f .

This discussion shows that a convex function has a subgradient at x if there is at least
one nonvertical supporting hyperplane to epi f at (x, f(x)). This is the case, for example, if
f is continuous. There are pathological convex functions which do not have subgradients at
some points, but we will assume in the sequel that all convex functions are subdifferentiable
(at every point in dom f).

2.2 Subgradients of differentiable functions

If f is convex and differentiable at x, then ∂f(x) = {∇f(x)}, i.e., its gradient is its only
subgradient. Conversely, if f is convex and ∂f(x) = {g}, then f is differentiable at x and
g = ∇f(x).

2.3 The minimum of a nondifferentiable function

A point x⋆ is a minimizer of a convex function f if and only if f is subdifferentiable at x⋆

and
0 ∈ ∂f(x⋆),

i.e., g = 0 is a subgradient of f at x⋆. This follows directly from the fact that f(x) ≥ f(x⋆)
for all x ∈ dom f .

This condition 0 ∈ ∂f(x⋆) reduces to ∇f(x⋆) = 0 if f is differentiable at x⋆.
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3 Calculus of subgradients

In this section we describe rules for constructing subgradients of convex functions. We
will distinguish two levels of detail. In the ‘weak’ calculus of subgradients the goal is to
produce one subgradient, even if more subgradients exist. This is sufficient in practice, since
subgradient, localization, and cutting-plane methods require only a subgradient at any point.

A second and much more difficult task is to describe the complete set of subgradients
∂f(x) as a function of x. We will call this the ‘strong’ calculus of subgradients. It is useful
in theoretical investigations, for example, when describing the precise optimality conditions.

3.1 Nonnegative scaling

For α ≥ 0, ∂(αf)(x) = α∂f(x).

3.2 Sum and integral

Suppose f = f1 + · · · + fm, where f1, . . . , fm are convex functions. Then we have

∂f(x) = ∂f1(x) + · · ·+ ∂fm(x).

This property extends to infinite sums, integrals, and expectations (provided they exist).

3.3 Affine transformations of domain

Suppose f is convex, and let h(x) = f(Ax + b). Then ∂h(x) = AT ∂f(Ax + b).

3.4 Pointwise maximum

Suppose f is the pointwise maximum of convex functions f1, . . . , fm, i.e.,

f(x) = max
i=1,...,m

fi(x),

where the functions fi are subdifferentiable. We first show how to construct a subgradient
of f at x.

Let k be any index for which fk(x) = f(x), and let g ∈ ∂fk(x). Then g ∈ ∂f(x). In other
words, to find a subgradient of the maximum of functions, we can choose one of the functions
that achieves the maximum at the point, and choose any subgradient of that function at the
point. This follows from

f(z) ≥ fk(z) ≥ fk(x) + gT (z − x) = f(x) + gT (y − x).

More generally, we have

∂f(x) = Co ∪ {∂fi(x) | fi(x) = f(x)},

i.e., the subdifferential of the maximum of functions is the convex hull of the union of
subdifferentials of the ‘active’ functions at x.
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Example. Maximum of differentiable functions. Suppose f(x) = maxi=1,...,m fi(x),
where fi are convex and differentiable. Then we have

∂f(x) = Co{∇fi(x) | fi(x) = f(x)}.

At a point x where only one of the functions, say fk, is active, f is differentiable and

has gradient ∇fk(x). At a point x where several of the functions are active, ∂f(x) is

a polyhedron.

Example. ℓ1-norm. The ℓ1-norm

f(x) = ‖x‖1 = |x1| + · · · + |xn|

is a nondifferentiable convex function of x. To find its subgradients, we note that f

can expressed as the maximum of 2n linear functions:

‖x‖1 = max{sT x | si ∈ {−1, 1}},

so we can apply the rules for the subgradient of the maximum. The first step is to
identify an active function sTx, i.e., find an s ∈ {−1,+1}n such that sT x = ‖x‖1. We
can choose si = +1 if xi > 0, and si = −1 if xi < 0. If xi = 0, more than one function
is active, and both si = +1, and si = −1 work. The function sT x is differentiable and
has a unique subgradient s. We can therefore take

gi =











+1 xi > 0
−1 xi < 0
−1 or + 1 xi = 0.

The subdifferential is the convex hull of all subgradients that can be generated this
way:

∂f(x) = {g | ‖g‖∞ ≤ 1, gT x = ‖x‖1}.

3.5 Supremum

Next we consider the extension to the supremum over an infinite number of functions, i.e.,
we consider

f(x) = sup
α∈A

fα(x),

where the functions fα are subdifferentiable. We only discuss the weak property.
Suppose the supremum in the definition of f(x) is attained. Let β ∈ A be an index for

which fβ(x) = f(x), and let g ∈ ∂fβ(x). Then g ∈ ∂f(x). If the supremum in the definition
is not attained, the function may or may not be subdifferentiable at x, depending on the
index set A.

Assume however that A is compact (in some metric), and that the function α 7→ fα(x)
is upper semi-continuous for each x. Then

∂f(x) = Co ∪ {∂fα(x) | fα(x) = f(x)}.
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Example. Maximum eigenvalue of a symmetric matrix. Let f(x) = λmax(A(x)),
where A(x) = A0 + x1A1 + · · · + xnAn, and Ai ∈ Sm. We can express f as the
pointwise supremum of convex functions,

f(x) = λmax(A(x)) = sup
‖y‖2=1

yT A(x)y.

Here the index set A is A = {y ∈ Rn | ‖y2‖1 ≤ 1}.

Each of the functions fy(x) = yT A(x)y is affine in x for fixed y, as can be easily seen
from

yT A(x)y = yT A0y + x1y
T A1y + · · · + xnyT Any,

so it is differentiable with gradient ∇fy(x) = (yT A1y, . . . , yT Any).

The active functions yT A(x)y are those associated with the eigenvectors corresponding
to the maximum eigenvalue. Hence to find a subgradient, we compute an eigenvector
y with eigenvalue λmax, normalized to have unit norm, and take

g = (yT A1y, yT A2y, . . . , yT Any).

The ‘index set’ in this example is {y | ‖y‖ = 1} is a compact set. Therefore

∂f(x) = Co {∇fy | A(x)y = λmax(A(x))y, ‖y‖ = 1} .

3.6 Minimization over some variables

The next subgradient calculus rule concerns functions of the form

f(x) = inf
y

F (x, y)

where F (x, y) is subdifferentiable and jointly convex in x and y. Again we only discuss the
weak property.

Suppose the infimum over y in the definition of f(x̂) is attained at y = ŷ, i.e., f(x̂) =
F (x̂, ŷ) and F (x, ŷ) ≥ F (x̂, ŷ) for all x. Then there exists a g such that (g, 0) ∈ ∂F (x̂, ŷ),
and any such g is a subgradient of f at x̂.

Strong property. Let x2 be such that f(x1) = infx2
F (x1, x2). Then ∂f(x1) = {g1 | (g1, 0) ∈

∂F (x1, x2)}, (and the resulting subdifferential is independent of the choice of x2).

3.7 Optimal value function of a convex optimization problem

Suppose f : Rm ×Rp → R is defined as the optimal value of a convex optimization problem
in standard form, with z ∈ Rn as optimization variable,

minimize f0(z)
subject to fi(z) ≤ xi, i = 1, . . . , m

Az = y.
(2)
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In other words, f(x, y) = infz F (x, y, z) where

F (x, y, z) =

{

f0(z) fi(z) ≤ xi, i = 1, . . . , m, Az = y
+∞ otherwise,

which is jointly convex in x, y, z. Subgradients of f can be related to the dual problem
of (2) as follows.

Suppose we are interested in subdifferentiating f at (x̂, ŷ). We can express the dual
problem of (2) as

maximize g(λ) − xT λ − yTν
subject to λ � 0.

(3)

where

g(λ) = inf
z

(

f0(z) +
m
∑

i=1

λifi(z) + νT Az

)

.

Suppose strong duality holds for problems (2) and (3) at x = x̂ and y = ŷ, and that the
dual optimum is attained at λ⋆, ν⋆ (for example, because Slater’s condition holds). From
the global perturbation inequalities we know that

f(x, y) ≥ f(x̂, ŷ) − λ⋆T (x − x̂) − ν⋆T (y − ŷ)

In other words, the dual optimal solution provides a subgradient:

−(λ⋆, ν⋆) ∈ ∂f(x̂, ŷ).

4 Quasigradients

If f(x) is quasiconvex, then g is a quasigradient at x0 if

gT (x − x0) ≥ 0 ⇒ f(x) ≥ f(x0),

Geometrically, g defines a supporting hyperplane to the sublevel set {x | f(x) ≤ f(x0)}.
Note that the set of quasigradients at x0 form a cone.

Example. Linear fractional function. f(x) = aT x+b
cT x+d

. Let cT x0 + d > 0. Then

g = a − f(x0)c is a quasigradient at x0. If cT x + d > 0, we have

aT (x − x0) ≥ f(x0)c
T (x − x0) =⇒ f(x) ≥ f(x0).

Example. Degree of a polynomial. Define f : Rn → R by

f(a) = min{i | ai+2 = · · · = an = 0},

i.e., the degree of the polynomial a1 + a2t + · · · + antn−1. Let a 6= 0, and k = f(a),
then g = sign(ak+1)ek+1 is a quasigradient at a

To see this, we note that

gT (b − a) = sign(ak+1)bk+1 − |ak+1| ≥ 0

implies bk+1 6= 0.
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