Analytic Center Cutting-Plane Method

• analytic center cutting-plane method
• computing the analytic center
• pruning constraints
• lower bound and stopping criterion

Prof. S. Boyd, EE364b, Stanford University
Analytic center cutting-plane method

analytic center of polyhedron $\mathcal{P} = \{ z \mid a_i^T z \preceq b_i, \ i = 1, \ldots, m \}$ is

$$AC(\mathcal{P}) = \arg\min_z - \sum_{i=1}^m \log(b_i - a_i^T z)$$

ACCPM is localization method with next query point $x^{(k+1)} = AC(\mathcal{P}_k)$ (found by Newton’s method)
ACCPM algorithm

given an initial polyhedron \mathcal{P}_0 known to contain X.

$k := 0$.

repeat

Compute $x^{(k+1)} = AC(\mathcal{P}_k)$.

Query cutting-plane oracle at $x^{(k+1)}$.

If $x^{(k+1)} \in X$, quit.

Else, add returned cutting-plane inequality to \mathcal{P}.

\[\mathcal{P}_{k+1} := \mathcal{P}_k \cap \{ z \mid a^Tz \leq b \} \]

If $\mathcal{P}_{k+1} = \emptyset$, quit.

$k := k + 1$.

Prof. S. Boyd, EE364b, Stanford University
Constructing cutting-planes

minimize $f_0(x)$
subject to $f_i(x) \leq 0, \quad i = 1, \ldots, m$

$f_0, \ldots, f_m : \mathbb{R}^n \to \mathbb{R}$ convex; X is set of optimal points; p^* is optimal value

- if x is not feasible, say $f_j(x) > 0$, we have (deep) feasibility cut

 $$f_j(x) + g_j^T (z - x) \leq 0, \quad g_j \in \partial f_j(x)$$

- if x is feasible, we have (deep) objective cut

 $$g_0^T (z - x) + f_0(x) - f^{(k)}_{\text{best}} \leq 0, \quad g_0 \in \partial f_0(x)$$
Computing the analytic center

we must solve the problem

\[
\text{minimize} \quad \Phi(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)
\]

where \(\text{dom} \Phi = \{x \mid a_i^T x < b_i, \ i = 1, \ldots, m\} \)

- **challenge**: we are not given a point in \(\text{dom} \Phi \)
- **some options**:
 - use phase I method to find a point in \(\text{dom} \Phi \) (or determine that \(\text{dom} \Phi = \emptyset \)); then use standard Newton method to compute AC
 - use infeasible start Newton method starting from a point outside \(\text{dom} \Phi \)
Infeasible start Newton method

\[
\begin{align*}
\text{minimize} & \quad - \sum_{i=1}^{m} \log y_i \\
\text{subject to} & \quad y = b - Ax
\end{align*}
\]

with variables \(x\) and \(y\)

- can be started from *any* \(x\) and *any* \(y > 0\)
- *e.g.*: take initial \(x\) as previous point \(x_{\text{prev}}\), and choose \(y\) as

\[
y_i = \begin{cases}
 b_i - a_i^T x & b_i - a_i^T x > 0 \\
 1 & \text{otherwise}
\end{cases}
\]
• define primal and dual residuals as

\[r_p = y + Ax - b, \quad r_d = \begin{bmatrix} A^T \nu \\ g + \nu \end{bmatrix} \]

where \(g = -\text{diag}(1/y_i)1 \) is gradient of objective and \(r = (r_d, r_p) \)

• Newton step at \((x, y, \nu)\) is defined by

\[
\begin{bmatrix}
0 & 0 & A^T \\
0 & H & I \\
A & I & 0
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y \\
\Delta \nu
\end{bmatrix}
= -
\begin{bmatrix}
r_d \\
r_p
\end{bmatrix},
\]

where \(H = \text{diag}(1/y_i^2) \) is Hessian of the objective
• solve this system by block elimination

\[
\Delta x = -(A^T HA)^{-1}(A^T g - A^T H r_p)
\]
\[
\Delta y = -A \Delta x - r_p
\]
\[
\Delta \nu = -H \Delta y - g - \nu
\]

• options for computing \(\Delta x \):
 - form \(A^T HA \), then use dense or sparse Cholesky factorization
 - solve (diagonally scaled) least-squares problem

\[
\Delta x = \arg\min_z \left\| H^{1/2} Az - H^{1/2} r_p + H^{-1/2} g \right\|_2
\]

 - use iterative method such as conjugate gradients to (approximately) solve for \(\Delta x \)
Infeasible start Newton method algorithm

given starting point \(x, y > 0 \), tolerance \(\epsilon > 0 \), \(\alpha \in (0, 1/2) \), \(\beta \in (0, 1) \).
\(\nu := 0 \).
repeat
 1. Compute Newton step \((\Delta x, \Delta y, \Delta \nu)\) by block elimination.
 2. Backtracking line search on \(\|r\|_2 \).
 \(t := 1 \).
 while \(y + t\Delta y \neq 0 \), \(t := \beta t \).
 while \(\|r(x + t\Delta x, y + t\Delta y, \nu + t\Delta \nu)\|_2 > (1 - \alpha t)\|r(x, y, \nu)\|_2 \),
 \(t := \beta t \).
 3. Update. \(x := x + t\Delta x \), \(y := y + t\Delta y \), \(\nu := \nu + t\Delta \nu \).
until \(y = b - Ax \) and \(\|r(x, y, \nu)\|_2 \leq \epsilon \).
Properties

• once any equality constraint is satisfied, it remains satisfied for all future iterates

• once a step size \(t = 1 \) is taken, all equality constraints are satisfied

• if \(\text{dom} \Phi \neq \emptyset \), \(t = 1 \) occurs in finite number of steps

• if \(\text{dom} \Phi = \emptyset \), algorithm never converges
Pruning constraints

- let x^* be analytic center of $\mathcal{P} = \{z \mid a_i^T z \leq b_i, \ i = 1, \ldots, m\}$

- let H^* be Hessian of barrier at x^*,

\[
H^* = -\nabla^2 \sum_{i=1}^{m} \log(b_i - a_i^T z) \bigg|_{z=x^*} = \sum_{i=1}^{m} \frac{a_i a_i^T}{(b_i - a_i^T x^*)^2}
\]

- then, $\mathcal{P} \subseteq \mathcal{E} = \{z \mid (z - x^*)^T H^* (z - x^*) \leq m^2\}$

define (ir)relevance measure $\eta_i = \frac{b_i - a_i^T x^*}{\sqrt{a_i^T H^* - 1} a_i}$
• η_i/m is normalized distance from hyperplane $a_i^T x = b_i$ to outer ellipsoid

• if $\eta_i \geq m$, then constraint $a_i^T x \leq b_i$ is redundant

common ACCPM constraint dropping schemes:

• drop all constraints with $\eta_i \geq m$ (guaranteed to not change P)

• drop constraints in order of irrelevance, keeping constant number, usually $3n - 5n$
PWL lower bound on convex function

• suppose f is convex, and $g^{(i)} \in \partial f(x^{(i)}), i = 1, \ldots, m$

• then we have

$$\hat{f}(z) = \max_{i=1,\ldots,m} \left(f(x^{(i)}) + g^{(i)}T(z - x^{(i)}) \right) \leq f(z)$$

• \hat{f} is PWL lower bound on f
Lower bound in ACCPM

• in solving convex problem

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_1(x) \leq 0, \\
& \quad Cx \preceq d
\end{align*}
\]

(by taking max of constraint functions we can assume there is only one)

• we have evaluated \(f_0 \) and subgradient \(g_0 \) at \(x^{(1)}, \ldots, x^{(q)} \)

• we have evaluated \(f_1 \) and subgradient \(g_1 \) at \(x^{(q+1)}, \ldots, x^{(k)} \)

• form piecewise-linear approximations \(\hat{f}_0, \hat{f}_1 \)
• form PWL relaxed problem

\[
\begin{align*}
\text{minimize} & \quad \hat{f}_0(x) \\
\text{subject to} & \quad \hat{f}_1(x) \leq 0, \\
& \quad Cx \leq d
\end{align*}
\]

(can be solved via LP)

• optimal value is a lower bound on \(p^* \)

• can easily construct a lower bound on the PWL relaxed problem, as a by-product of the analytic centering computation

• this, in turn, gives a lower bound on the original problem
• form dual of PWL relaxed problem

\[
\begin{align*}
\text{maximize} & \quad \sum_{i=1}^{q} \lambda_i (f_0(x^{(i)}) - g_0^{(i)}T x^{(i)}) \\
& \quad + \sum_{i=q+1}^{k} \lambda_i (f_1(x^{(i)}) - g_1^{(i)}T x^{(i)}) - d^T \mu \\
\text{subject to} & \quad \sum_{i=1}^{q} \lambda_i g_0^{(i)} + \sum_{i=q+1}^{k} \lambda_i g_1^{(i)} + C^T \mu = 0 \\
& \quad \mu \succeq 0, \quad \lambda \succeq 0, \quad \sum_{i=1}^{q} \lambda_i = 1,
\end{align*}
\]

• optimality condition for \(x^{(k+1)}\)

\[
\begin{align*}
\sum_{i=1}^{q} \frac{g_0^{(i)}}{f_{\text{best}} - f_0(x^{(i)}) - g_0^{(i)}T (x^{(k+1)} - x^{(i)})} + \\
\sum_{i=q+1}^{k} \frac{g_1^{(i)}}{-f_1(x^{(i)}) - g_1^{(i)}T (x^{(k+1)} - x^{(i)})} + \sum_{i=1}^{m} \frac{c_i}{d_i - c_i^T x^{(k+1)}} = 0.
\end{align*}
\]
• take $\tau_i = 1/(f_{\text{best}}^{(i)} - f_0(x^{(i)}) - g_0^{(i)T}(x^{(k+1)} - x^{(i)}))$ for $i = 1, \ldots, q$.

• construct a dual feasible point by taking

$$
\lambda_i = \begin{cases}
\tau_i/1^T\tau & \text{for } i = 1, \ldots, q \\
1/(-f_1(x^{(i)}) - g_1^{(i)T}(x^{(k+1)} - x^{(i)}))(1^T\tau) & \text{for } i = q + 1, \ldots, k,
\end{cases}
$$

$$
\mu_i = 1/(d_i - c_i^Tx^{(k+1)})(1^T\tau) \quad i = 1, \ldots, m.
$$

• using these values of λ and μ, we conclude that

$$
p^* \geq l^{(k+1)},
$$

where $l^{(k+1)} = \sum_{i=1}^{q} \lambda_i(f_0(x^{(i)}) - g_0^{(i)T}x^{(i)}) + \sum_{i=q+1}^{k} \lambda_i(f_1(x^{(i)}) - g_1^{(i)T}x^{(i)}) - d^T\mu.$
Stopping criterion

since ACCPM isn’t a descent method, we keep track of best point found, and best lower bound

- best function value so far: \(f_{\text{best}}^{(k)} = \min_{i=1,...,k} f_0(x^{(k)}) \)

- best lower bound so far: \(l_{\text{best}}^{(k)} = \max_{i=1,...,k} l(x^{(k)}) \)

- can stop when \(f_{\text{best}}^{(k)} - l_{\text{best}}^{(k)} \leq \epsilon \)

- guaranteed to be \(\epsilon \)-suboptimal
Example: Piecewise linear minimization

problem instance with $n = 20$ variables, $m = 100$ terms, $f^* \approx 1.1$
$$\text{best}$$ - $$f^{(k)}$$ - $$f^{\star}$$

$$f_{\text{best}}^{(k)}$$ - $$l_{\text{best}}^{(k)}$$
ACCPM with constraint dropping

PWL objective, \(n = 20 \) variables, \(m = 100 \) terms

\[
f_{best}(k) - f^* \quad \text{vs} \quad k
\]

- Blue line: no dropping
- Red dashed line: keeping 3\(n \)
number of inequalities in \mathcal{P}:
accuracy versus approximate cumulative flop count

\[
\log_{10}(f_{\text{best}} - f^*) \text{ vs. } \text{MegaFlops}
\]

- Blue line: no dropping
- Dashed red line: keeping \(3n\)

Prof. S. Boyd, EE364b, Stanford University
Epigraph ACCPM

PWL objective, \(n = 20 \) variables, \(m = 100 \) terms
Newton iterations

$f(k) - f^*$

$\frac{f(k)}{f_{best}}$