EE364b Homework 2

1. Subgradient optimality conditions for nondifferentiable inequality constrained optimization. Consider the problem

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m,
\end{align*}
\]

with variable \(x \in \mathbb{R}^n \). We do not assume that \(f_0, \ldots, f_m \) are convex. Suppose that \(\tilde{x} \) and \(\tilde{\lambda} \succeq 0 \) satisfy primal feasibility,

\[
f_i(\tilde{x}) \leq 0, \quad i = 1, \ldots, m,
\]

dual feasibility,

\[
0 \in \partial f_0(\tilde{x}) + \sum_{i=1}^{m} \tilde{\lambda}_i \partial f_i(\tilde{x}),
\]

and the complementarity condition

\[
\tilde{\lambda}_i f_i(\tilde{x}) = 0, \quad i = 1, \ldots, m.
\]

Show that \(\tilde{x} \) is optimal, using only a simple argument, and definition of subgradient. Recall that we do not assume the functions \(f_0, \ldots, f_m \) are convex.

Solution. Let \(g \) be defined by \(g(x) = f_0(x) + \sum_{i=1}^{m} \tilde{\lambda}_i f_i(x) \). Then, \(0 \in \partial g(\tilde{x}) \). By definition of subgradient, this means that for any \(y \),

\[
g(y) \geq g(\tilde{x}) + 0^T (y - \tilde{x}).
\]

Thus, for any \(y \),

\[
f_0(y) \geq f_0(\tilde{x}) - \sum_{i=1}^{m} \tilde{\lambda}_i (f_i(y) - f_i(\tilde{x})).
\]

For each \(i \), complementarity implies that either \(\lambda_i = 0 \) or \(f_i(\tilde{x}) = 0 \). Hence, for any feasible \(y \) (for which \(f_i(y) \leq 0 \)), each \(\tilde{\lambda}_i (f_i(y) - f_i(\tilde{x})) \) term is either zero or negative. Therefore, any feasible \(y \) also satisfies \(f_0(y) \geq f_0(\tilde{x}) \), and \(\tilde{x} \) is optimal.

2. Optimality conditions and coordinate-wise descent for \(\ell_1 \)-regularized minimization. We consider the problem of minimizing

\[
\phi(x) = f(x) + \lambda \|x\|_1,
\]

where \(f : \mathbb{R}^n \to \mathbb{R} \) is convex and differentiable, and \(\lambda \geq 0 \). The number \(\lambda \) is the regularization parameter, and is used to control the trade-off between small \(f \) and small \(\|x\|_1 \). When \(\ell_1 \)-regularization is used as a heuristic for finding a sparse \(x \) for which \(f(x) \) is small, \(\lambda \) controls (roughly) the trade-off between \(f(x) \) and the cardinality (number of nonzero elements) of \(x \).
(a) Show that \(x = 0\) is optimal for this problem (i.e., minimizes \(\phi\)) if and only if \(\|\nabla f(0)\|_\infty \leq \lambda\). In particular, for \(\lambda \geq \lambda_{\text{max}} = \|\nabla f(0)\|_\infty\), \(\ell_1\) regularization yields the sparsest possible \(x\), the zero vector.

Remark. The value \(\lambda_{\text{max}}\) gives a good reference point for choosing a value of the penalty parameter \(\lambda\) in \(\ell_1\)-regularized minimization. A common choice is to start with \(\lambda = \lambda_{\text{max}}/2\), and then adjust \(\lambda\) to achieve the desired sparsity/fit trade-off.

Solution. A necessary and sufficient condition for optimality of \(x = 0\) is that \(0 \in \partial \phi(0)\). Now \(\partial \phi(0) = \nabla f(0) + \lambda \partial \|0\|_1 = \nabla f(0) + \lambda [-1,1]^n\). In other words, \(x = 0\) is optimal if \(-\nabla f(x) \in [-\lambda,\lambda]^n\). This is equivalent to \(\|\nabla f(0)\|_\infty \leq \lambda\).

(b) Coordinate-wise descent. In the coordinate-wise descent method for minimizing a convex function \(g\), we first minimize over \(x_1\), keeping all other variables fixed; then we minimize over \(x_2\), keeping all other variables fixed, and so on. After minimizing over \(x_n\), we go back to \(x_1\) and repeat the whole process, repeatedly cycling over all \(n\) variables.

Show that coordinate-wise descent fails for the function

\[g(x) = |x_1 - x_2| + 0.1(x_1 + x_2).\]

(In particular, verify that the algorithm terminates after one step at the point \((x_2^{(0)}, x_2^{(0)})\), while \(\inf_x g(x) = -\infty\).) Thus, coordinate-wise descent need not work, for general convex functions.

Solution. We first minimize over \(x_1\), with \(x_2\) fixed as \(x_2^{(0)}\). The optimal choice is \(x_1 = x_2^{(0)}\), since the derivative on the left is \(-0.9\), and on the right, it is \(1.1\). We then arrive at the point \((x_2^{(0)}, x_2^{(0)})\). We now optimize over \(x_2\). But it is optimal, with the same left and right derivatives, so \(x\) is unchanged. We’re now at a fixed point of the coordinate-descent algorithm.

On the other hand, taking \(x = (-t, t)\) and letting \(t \to \infty\), we see that \(g(x) = -0.1t \to -\infty\).

It’s good to visualize coordinate-wise descent for this function, to see why \(x\) gets stuck at the crease along \(x_1 = x_2\). The graph looks like a folded piece of paper, with the crease along the line \(x_1 = x_2\). The bottom of the crease has a small tilt in the direction \((-1,-1)\), so the function is unbounded below. Moving along either axis increases \(g\), so coordinate-wise descent is stuck. But moving in the direction \((-1,-1)\), for example, decreases the function.

(c) Now consider coordinate-wise descent for minimizing the specific function \(\phi\) defined above. Assuming \(f\) is strongly convex (say) it can be shown that the iterates converge to a fixed point \(\bar{x}\). Show that \(\bar{x}\) is optimal, i.e., minimizes \(\phi\).

Thus, coordinate-wise descent works for \(\ell_1\)-regularized minimization of a differentiable function.

Solution. For each \(i\), \(\bar{x}_i\) minimizes the function \(\psi\), with all other variables kept
fixed. It follows that
\[0 \in \partial x_i \psi(\tilde{x}) = \frac{\partial f}{\partial x_i}(\tilde{x}) + \lambda I_i, \quad i = 1, \ldots, n, \]
where \(I_i \) is the subdifferential of \(| \cdot |\) at \(\tilde{x}_i \): \(I_i = \{-1\} \) if \(\tilde{x}_i < 0 \), \(I_i = \{+1\} \) if \(\tilde{x}_i > 0 \), and \(I_i = [-1, 1] \) if \(\tilde{x}_i = 0 \).

But this is the same as saying \(0 \in \nabla f(\tilde{x}) + \partial \| \tilde{x} \|_1 \), which means that \(\tilde{x} \) minimizes \(\psi \).

The subtlety here lies in the general formula that relates the subdifferential of a function to its partial subdifferentials with respect to its components. For a separable function \(h : \mathbb{R}^2 \to \mathbb{R} \), we have
\[\partial h(x) = \partial x_1 h(x) \times \partial x_2 h(x), \]
but this is false in general.

(d) Work out an explicit form for coordinate-wise descent for \(\ell_1 \)-regularized least-squares, \(\text{i.e.} \), for minimizing the function
\[\|Ax - b\|_2^2 + \lambda \|x\|_1. \]

You might find the deadzone function
\[\psi(u) = \begin{cases}
 u - 1 & u > 1 \\
 0 & |u| \leq 1 \\
 u + 1 & u < -1
\end{cases} \]
useful. Generate some data and try out the coordinate-wise descent method. Check the result against the solution found using CVX, and produce a graph showing convergence of your coordinate-wise method.

Solution. At each step we choose an index \(i \), and minimize \(\|Ax - b\|_2^2 + \lambda \|x\|_1 \) over \(x_i \), while holding all other \(x_j \), with \(j \neq i \), constant.

Selecting the optimal \(x_i \) for this problem is equivalent to selecting the optimal \(x_i \) in the problem
\[\text{minimize} \quad ax_i^2 + cx_i + |x_i|, \]
where \(a = (A^T A)_{ii}/\lambda \) and \(c = (2/\lambda)(\sum_{j \neq i}(A^T A)_{ij} x_j + (b^T A)_i) \). Using the theory discussed above, any minimizer \(x_i \) will satisfy \(0 \in 2ax_i + c + \partial |x_i| \). Now we note that \(a \) is positive, so the minimizer of the above problem will have opposite sign to \(c \). From there we deduce that the (unique) minimizer \(x_i^* \) will be
\[x_i^* = \begin{cases}
 0 & c \in [-1, 1] \\
 (1/2a)(-c + \text{sign}(c)) & \text{otherwise,}
\end{cases} \]
where
\[\text{sign}(u) = \begin{cases}
 -1 & u < 0 \\
 0 & u = 0 \\
 1 & u > 0.
\end{cases} \]
Finally, we make use of the deadzone function ψ defined above and write

$$x_i^* = \frac{-\psi((2/\lambda) \sum_{j \neq i} (A^T A)_{ij} x_j + (b^T A)_i)}{(2/\lambda)(A^T A)_{ii}}.$$

Coordinate descent was implemented in Matlab for a random problem instance with $A \in \mathbb{R}^{400 \times 200}$. When solving to within 0.1% accuracy, the iterative method required only a third the time of cvx. Sample code appears below, followed by a graph showing the coordinate-wise descent method’s function value converging to the CVX function value.

```matlab
% Generate a random problem instance.
randn('state', 10239); m = 400; n = 200;
A = randn(m, n); ATA = A'*A;
b = randn(m, 1);
l = 0.1;
TOL = 0.001;
xcoord = zeros(n, 1);

% Solve in cvx as a benchmark.
cvx_begin
    variable xcvx(n);
    minimize(sum_square(A*xcvx + b) + l*norm(xcvx, 1));
cvx_end

% Solve using coordinate-wise descent.
while abs(cvx_optval - (sum_square(A*xcoord + b) + ...)
    1*norm(xcoord, 1))/cvx_optval > TOL
    for i = 1:n
        xcoord(i) = 0; ei = zeros(n,1); ei(i) = 1;
        c = 2/l*ei'*(ATA*xcoord + A'*b);
        xcoord(i) = -sign(c)*pos(abs(c) - 1)/(2*ATA(i,i)/l);
    end
end
```