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Instructor (Stephen Boyd):All right. We’ll start. The first thing I should say is that 
we’re about to assign Homework 4. How was Homework 2? That was due Tuesday, 
right? And you know we have a Homework 3 assigned. We’re gonna assign Homework 4 
so that we’re fully pipelined. We have at least two active homeworks, typically, at once. 
What’s wrong with that? That’s how you learn. You’re learning, right? Sure you are. And 
so the other thing coming up soon is this business of the project. And on the website, we 
have some date we made up before the class started. And I believe it’s even tomorrow. 
It’s tomorrow. So by tomorrow, you should produce some kind of two- or three-age 
proposal to us. And we’ll iterate it. If we don’t like it, we won’t read past the first 
paragraph. We’ll just give it back to you and you’ll keep working on it until we like it. So 
the way we’ll like it is it’s got to be simple. There’s got to be an opening paragraph. In 
fact, we were even thinking of defining a formal XML scheme or whatever for it. But it’s 
got to be a paragraph that has nothing but English and says kinda what the context of the 
problem is. So for example, I’m doing air traffic control or I’m blending covariant 
matrices from disparate sources or something like that. And says a little bit about what 
the challenges are and what you’ll consider. Then when you get into what the problem is, 
you describe kind of what it is and what you’re gonna do. If it goes on for more than a 
page, if the setup is more than a page, it’s gonna be too complicated for the project. Your 
real interest might be complicated, but then that’s not gonna be a good project here. So 
what we want is we’ll read these and we’ll get feedback to you pretty quickly, we hope, 
on these things. So you should also be just talking to us, just to kinda refine the ideas and 
stuff like that. And things we’ll look for is, it goes without saying, this will be done in 
LaTeX. Nothing else is even close to acceptable. I won’t even name alternatives.  

The other is that the style should look something like the style of the notes that we post 
online. That should be the style. There are lots of styles. That’s one. It’s a perfectly good 
style. So I don’t see any reason why you shouldn’t just attempt to match that style. That’s 
statistically for random style checker. No statistical test should reveal that, for example, I 
didn’t write it. That would be a perfectly good model. There are other styles that are very 
good and different, but that’s a good style and you could go with that. So if you look at 
your thing and if you find that your notation for an optimization problem differs from 
mine, change yours. Because, although there are other consistent notations, like there’s 
the Soviet one, and there’s other ones, I don’t need to see them. It’s just easier. And if 
used consistently, that’s perfectly okay. But just to make it simple, just use our notation. 
So when you describe an optimization problem, it should look like the way we do in 
notes, finals, lectures, all that stuff. So I guess they’ll be due tomorrow at 5:00 or 
something like that. If you’re still sort of in active discussions with us and haven’t quite 
closed in on that, that’s okay, but you should be – then come to us and let us know you’re 
gonna do it over the weekend or something like that. And we’ll consider this just the first 
cut. Are there any questions about that, about how that’s gonna work? Anybody still 
looking for a project, because we can assign. Every lecture I say, “This would make an 
outstanding project.” No one’s ever gotten back to me – ever. We can make up project for 
you, too. Yeah?  



Student:Can we changes to the initial proposal?  

Instructor (Stephen Boyd):Yeah. Don’t even think about handing us something that’s 
15 pages. We’re not even – actually, ideal would be a half page. I mean, you have to have 
just the right project. By the way, you might be able to pull it off, half page. Okay. That’s 
fine. That would be great. Shorter the better. And if there’s any previous work or 
something like that, we haven’t asked for it, but at some point, you’re gonna have to do 
that. So I mean, I presume at this point, if you have an idea of a project, you’ve kind of 
done some Googling and all that. We assume that. That goes without saying. And you 
can add some references or something like that, if you want. Okay. Any other questions 
about this? Otherwise, we’ll just continue. Oh – no, we’ll wait. So last time we looked at 
localization methods. So the basic idea of a localization method – you can think of these 
as just generalizations of bisection. They’re generalization to Rn. So you have bisection 
in multiple dimensions, and it’s not a simple – there’s no simple extension to Rn. 
Because in R, first of all, convex sets are kinda boring. They’re basically just intervals. 
And there’s an obvious center of an interval. In Rn, things are much more complicated. 
You have many different centers. I don’t know if you have that point. Where is it? Here 
we go. Thanks. Okay. So the basic idea is you have some polyhedron, where you know 
the solution – if it exists. And you query a cutting-plane oracle at the point x, and what 
comes back – in this case, this is a neutral cut here. In other words, what it’s basically 
telling you is that you need not even consider anything over here. So the solution is not 
here, if it exists. And so this is your posterior or updated ignorance set, or whatever you 
want to call it. It’s the set of points or localization set. It’s the set of points in which, if 
there is a solution, you know it must lie. I should mention one thing, there’s more 
material on this, of course, in the notes, which you should be reading. And we’re 
expecting everybody to be reading. Okay. So bisection on R is the most obvious and 
well-known example. Let’s look at some other ones. We’ll look at some of these in more 
detail today. The first is the CG method. I just got up to that at the end of last lecture. 
Here we have x(k+1) is the center of gravity. I’ll review that quickly and say a few things 
about it that I didn’t get to say last time. Other would be maximum volume ellipsoid, 
Chebyshev center, analytic center. These would be some of the other ones. And we’ll talk 
about each of those in a little bit of detail. So the CG algorithm is the CG of the 
polyhedron of your query point. And there’s an amazing fact.  

In fact, we may even, if we can find a simple enough group, we’ll stick it on Homework 
4, which we’re working on. And the amazing fact says this, that if you take any convex 
set in Rn, and take the center of gravity of that set, and then pass any plane through that 
point, the question is, how unevenly does it divide the volume? So anybody guess the 
answer’s 50/50? For example, in R, it’s 50/50. But it turns out immediately you draw a 
couple of pictures in R2 and you’ll see that, in fact, there’s no point – you can make a 
convex body for which there’s no point for which all lines going through it divides the 
area 50/50. But it turns out you can’t skew it too much. And it turns out than the actual 
ratio you can go to is 0.63/0.37. So it’s roughly not even two to one. Because it’s this 
divided by 0.37. Not even 2 to 1. It’s more like 1.5 to 1. And that means, basically, if you 
find the CG of a set, and you put the worst hyperplane through that point, it will chop off 
at least 37 percent of the volume. So that’s what it is. Okay. So that says in the CG 



algorithm, that’s very nice, because it says the volume of the localized set goes down by 
the factor of 0.63 at least. It can go down more. If you have a deep cut, it goes down by 
more. And of course, the 0.63 is the factor for the absolute worst possible hyperplane at 
each step. And in fact, it obviously is typically much less, or something like that. So 
that’s that. We’ll look at the convergence and look through various things. And we came, 
at the last minute, to basically the problem with the algorithm. The problem with the 
algorithm is computing the CG is extremely difficult. So it’s a conceptual problem is the 
way it’s described. Now you can modify the CG method to work with approximately CG 
computations. I’m gonna mention some of those, because there’s some very cool new 
work, not from Moscow, from MIT, and it’s very, very cool stuff. I’ll say some of that. 
Obviously, you don’t have to compute the CG exactly. So first, there are methods even 
from the ‘60s, where a cheaply computable approximation of the CG is given, and then 
you have a chopping, a slicing inequity theorem, which is not as strong as the 0.63, but is 
enough to sorta give you convergence and so on. So those you already had in the ‘60s. So 
those are approximately CG methods. But let me just mention, actually, a really cool 
method developed four or five years ago, something like that, at MIT. Very, very cool. 
Goes like this. You want to calculate the CG of a convex set. And you can use a 
randomized method. And the randomized method is called hit and run. Has anyone heard 
of this? It’s just very cool. It’s an advanced class, so I can go off on a weird tangent and 
tell you about it. So the way it works is this, you have a point, and you generate a random 
direction. So you generate a random direction and you make a line. And you need the 
following: you need the ability to find out where that line pierces your set. So that’s what 
you need. So here’s your set. I’ll make it a polyhedron, but it does not have to be a 
polyhedra. Just any old convex set. It doesn’t really matter. Here’s your set. And you take 
a point here, and you generate a random direction. Actually, how do you generate a 
random direction? Uniform on the unit sphere. How do you do that?  

Student:[Inaudible].  

Instructor (Stephen Boyd):Thank you for bringing that up. I should say, calculating the 
CG in 2D and 3D is no problem at all. 2D is trivial. All you do is you calculate, you find 
a point in the set, you calculate a triangulation of the polyhedron, done. In 3D, same 
thing. However, it’s gonna scale sorta exponentially in the dimension. So if you’re 
interested in 2D and 3D, CG is a non-problem. Okay. So how do you generate a random 
direction, uniform on the unit sphere? Just a random variable uniform on the unit sphere?  

Student:Choose a random vector.  

Instructor (Stephen Boyd):Yeah, fine, but how do you choose a random vector? What 
distribution?  

Student:[Inaudible].  

Instructor (Stephen Boyd):Why, because you can’t think of any other? You happen to 
be right. You choose a random Gaussian vector. So it’s n0i vector. That’s circularly 
symmetric. And so if you then normalize that, you get a uniform distribution on the unit 



sphere. So you choose a random direction here, and so here’s the line you get. And the 
only thing you need to do is to calculate these two intersections, which is very easy to do. 
Now you do the following: you generate a random variable uniform on this interval, and 
that is your new point. So that’s gonna be right here. And you repast. So you go here, you 
calculate a random direction – the direction turns out to be this – you do a random point 
on there when you get there, and you go on. So I suppose these are the hitting points and 
this is the running, or who knows. I don’t know how that name came up, but that’s what 
it is. Everybody got this? So that’s a Markov chain. It’s a Markov chain propagating in 
the polyhedron. And it actually converges to a steady state distribution that’s uniform on 
the polyhedron. So that’s a method for generating a random variable that’s uniform. By 
the way, if you have a method that calculates a random variable that’s uniform on the set, 
how do you find the CG?  

Student:[Inaudible].  

Instructor (Stephen Boyd):Thank you. You just average. Let me ask you another 
question. Anybody got other ideas for how to generate a random point in a polyhedron 
uniform distribution?  

Student:Run the distribution everywhere and reject the ones at the outside of the set.  

Instructor (Stephen Boyd):It couldn’t be everywhere, because it has to be uniform. 
Okay. So what you do is you find a bounding box. Everybody knows how to find a 
bounding box. How do you find a bounding box for a polyhedron? This is the problem 
with scheduling class at 9:30. It’s before full outer cortical activity has warmed up. How 
do you find the bounding box for a polyhedron?  

Student: Minimize x1 [inaudible]. Instructor.  

So you minimize x1 and you maximize x1. You minimize x2 and you maximize x2. And 
these are like LPs or something. Of course, maybe we’re trying to solve an LP. I don’t 
know what we’re trying to do. But still, that’s how you do it, by solving two NLPs. So 
you make a big bounding box like this, and now you generate a uniform distribution on 
that. And you do that by taking a uniform distribution of each edge and sticking them 
together. And then you reject the ones that are outside this thing. And the ones inside, 
actually, then, are drawn from a uniform distribution on the polyhedron. Any comments 
on how you imagine that might scale with the dimension? I’m not saying you have the 
bounding box.  

Student:Exponentially.  

Instructor (Stephen Boyd):Which way, though? Exponentially what? What would 
happen exponentially? You’re right, something happens exponentially. What is it?  

Student:To test if the point is in the polyhedron?  



Instructor (Stephen Boyd):No, no. To test if a point is in the polyhedron, you form ax. 
You give me x, I calculate ax. I check if it’s less than or equal to b. That’s fast. What 
happens.  

Student:Volumes.  

Instructor (Stephen Boyd):There you go. Ratio volumes in the worst case goes down 
exponentially. And that means you’ll generate exponentially many random points before 
you even get one in this set. So although that does, indeed, produce a uniform distribution 
on the set, it’s not gonna scale gracefully to the high dimensions. Okay. So anyway, this 
is the hit and run method. There’s lot of – you can certainly do a cutting-plane method 
with something like this. And a more sophisticated version. Okay, so that’s the CG 
method. Yeah?  

Student:[Inaudible] in the vertices, where it intersects?  

Instructor (Stephen Boyd):Oh, here? Oh, that’s actually quite straightforward. If this is 
a polyhedron, let me show you how that calculation goes. So the calculation goes like 
this: here’s your polyhedron. It’s defined by that inequality. So ax less than b. You’re 
given a base point x0 and a direction, v. And you want to find the maximum and 
minimum values for which this holds. That holds for t for an interval, right. So I’m 
assuming this is bounded polyhedron. I’m assuming x0 is in the polyhedron, although 
none of that matters. So that says that a(x0), that’s if t equals zero, is less than b. And 
now you want to find how much can you increase t until this becomes false. And how 
much can you decrease t below zero until it becomes false. That’s the question. So you 
just write it this way. It’s actually kinda dumb. You write a(x0) plus t times av is less than 
or equal to b. That’s a vector, that’s a vector, now it’s very easy to work out the 
maximum. Because this is basically – let’s call this a plus t – no, no, that wasn’t a good 
idea. How about a plus tc is less than b. Now it’s gonna work. Now it’s extremely easy. 
What you have to do is this, if I increase t, this thing – by the way, if a ci is negative, or 
zero, increasing t doesn’t hurt – we’re not going to get into trouble there. So if I want to 
know how high can I increase t, I only focus on the positive entries of c. So I first look at 
the positive entries of c, and I divide them by a, or something like that, and then I take 
them in, or something, and that’s my – well, I do something. Anyway, it’s a 300-level 
class. I can just say it’s easy to do. This made sense, though? So in fact, when you 
actually do this, it’s two little lines of something. Okay. Maximum volume ellipsoid 
method, this method is not a conceptual method; it’s a real one. Actually works really 
well. And here, x(k+1) is the center of the maximum volume ellipsoid in Pk, which, I 
don’t know if you remember or not, but that can actually be computed by solving a 
convex problem. By the way, how about the minimum volume ellipsoid method? In that 
case, you calculate the minimum volume ellipsoid that covers the polyhedron. Let’s have 
a short discussion talking about the minimum volume ellipsoid method. I don’t know if 
you remember this, but you can kinda guess. Any comments on the minimum volume 
ellipsoid method? By the way, it would work really well. You would get a guaranteed 
volume reduction and everything.  



Student: 

[Inaudible].  

Instructor (Stephen Boyd):Yeah. In fact, finding the minimum volume ellipsoid that 
covers a polyhedron defined by linear inequalities is actually hard. The method is like the 
CG method. I gave you enough hints that you could figure it out. Did you actually 
remember that?  

Student:[Inaudible].  

Instructor (Stephen Boyd):Oh, and then your remembered. Good. Okay, that’s a short 
discussion of the minimum volume ellipsoid method. But the maximum volume ellipsoid 
method is actually a quite – it’s not a conceptual method. It actually works very, very 
well. And in this case, the volume reduction you get is actually very interesting. And the 
volume reduction is this: the guaranteed volume reduction is not a fixed number, as it is 
in the CG method. In the CG method, you will reduce by 37 percent, end of story. Any 
dimension. In this case, your volume reduction guarantee degrades with dimension. By 
the way, it degrades gracefully enough that this method can actually be used to construct 
a polynomial time convex optimization method. Because a good enough approximation 
of the maximum volume ellipsoid can be calculated in polynomial time and so on and so 
forth. And this is also called – it’s got four initials, TK – Russian names go together. I 
won’t attempt it. Actually, I think it’s described in the notes. Now, once you know to get 
this volume reduction, you can work out a bound on the number of steps required, and in 
this case, it scales not like n, as it was before, but it’s actually n2. So this one degrades. 
And this is actually quite a good practical method. Okay. Other ones? You can pretty 
much make up your own method here. Chebyshev center method, I thought I’d mention 
it. Now, the problem with the Chebyshev center, that’s the largest Euclidean ball in Pk, 
and that’s solved by an LP, by the way. That’s a linear program to calculate the 
maximum volume ball that fits inside an ellipsoid is just an LP. Now this one, however, 
is not affine in variant. In other words, if I take my original problem, and I do a linear 
change – if I do a scale, actually, if I scale the variables, maximum volume ellipsoid is 
CG, you get a commutative diagram. In other words, if you take a polyhedron and you 
subject it to an affine mapping, you multiply it by t and add some s, or something – t’s a 
non-singular square matrix – then the CG will also change coordinates exactly the same 
way. Because CG commutes with an affine change of coordinates. So that means that the 
CG method is actually affine coordinate change in variant. Okay. The same is true of 
maximum volume ellipsoid. If I give you a set and I ask you to find the maximum 
volume ellipsoid inside it, if I then change coordinates by an affine change of coordinates 
and ask you to do it again, it commutes. So the maximum volume ellipsoid that fits in the 
transform thing is the transform of the maximum volume ellipsoid that fit in it. So that 
was my verbal way of drawing a commutative diagram. Now, this has a number of 
implications. First of all, for our complexity theorist friends, this is, of course, extremely 
important.  



But it actually has lots of practical implications, and they’re quite serious. Basically, you 
have a method that’s affine in variant, in practice what it means is scaling of variables is a 
second-order issue. Now in exact arithmetic, of course, it’s a non-issue. But it means it’s 
a second-order issue. It’s a second-order issue because scaling can hurt you, but only 
through numerical round off and things like that. Therefore, being off by a factor of 1,000 
in the scaling coordinates and no one gets hurt. Whereas, a method like Chebyshev 
center, here, I guarantee you, if you have your Chebyshev method, the center method 
works really well, and I scale, for example, the first and the eighth coordinate by a factor 
of 1,000 to 1, your method is not going to work, basically at all. So that’s the basic point 
there. Now having said that, I should say this, if you’re solving a specific problem where 
you know what x1 is, x1 is measured in meters per second, and it varies between 
plus/minus five. And x7 is a pitch rate in radiants per second, or something like that, or 
radiants per second squared. And you know how it’s scaled. So in actual specific 
practical problems, the whole business of affine and variants may not be that relevant, 
because in a specific problem, you generally know what the numbers are, what the ranges 
are and things like that. Okay. Now we’re gonna look at this one in considerable detail, 
actually, in the next lecture, because it’s one that this one seems to have a very nice 
property. It actually works really well in practice. And it also has some nice theoretical 
properties. So in this case, you take x(k+1) to be the analytic center of Pk. I should 
mention that this English here, the analytic center of Pk, that’s slang. That’s informal and 
it’s actually not correct. Because the analytic center is not the analytic center of a 
geometrical set. You have the analytic center of a set of inequalities. And obviously, you 
can have multiple sets of inequalities that describe the same geometric set. And in fact, 
take your favorite polyhedron, and add all sorts of redundant inequalities. The set hasn’t 
changed; the analytic center has. And in fact, the following is true: take a polyhedron, and 
take any point in the interior of your polyhedron. So pick any point at all. It can’t be on 
the boundary, but take any point in the interior of the polyhedron. By adding redundant 
inequalities, you can make any point you like the analytic center. Now, you may have to 
add a large number of inequalities and things like that, that’s true. But the point is, you 
should remember that this is informal and it is slang. So meaning it’s just not right. Okay. 
So the analytic center is this. It’s the argmin, of course, of the sum of the logs of – you 
maximize the sum of the logs of the slacks. These are the slacks in your inequalities. By 
the way, this is the same as maximizing the product of the inequalities. So it’s exactly the 
same thing. You maximize the product of the inequalities. By the way, if you – there’s 
many other things you could do. You could do things like maximize the minimum slack.  

And if the ai’s were all normalized to have the same length, for example one, that would 
correspond exactly to the Chebyshev center. Because bi minus ai transpose x is norm – 
whatever it is. It’s the distance to that hyperplane divided by the 2 norm of ai. So this 
works quite well. And we’re gonna go into that in great detail later today. Okay. For 
these cutting-plane methods, there are lots of extensions. I’ll mention a bunch of them, 
and when we look at center cutting-plane method, we’ll look at how these things work. 
So once you get the idea that the only interface is a cutting-place oracle, then you can 
imagine all sorts of cool things. So you could do all sorts of things. You could do things 
like this. Your oracle, when you call your oracle with x, instead of just giving a single – I 
mean, there’s tons of stuff you could do. Instead of just returning a single cutting plane, 



you could easily imagine something that returns multiple cutting planes. And I’ll give 
you an example. Suppose you’re solving an inequality constraint problem. The simple 
method would be this: you take your constraint functions and you evaluate each one. You 
have to do that. So you evaluate f1, f2, f3, and the first time you find an f that’s positive, 
you call that f, fk.getsubgradient. And you get a subgradient back. That’s one method for 
generating a cutting place. But in fact, what you could do is if you sweep all the 
constraints, you could then get the most violated constraint. But another option is to give 
all the constraints, just give them all at once. And you just update your polyhedron and 
everything’s fine. By the way, you can actually return not just – if you return multiple 
inequalities, you could actually return shallow cuts. Shallow cuts are fine, as long as one 
of the cuts you return is actually deep, or neutral. So it’s still useful information. So let 
me just draw a picture to show what that would look like. So that would look something 
like this. And you might get some other kind of very colorful name for it. Here’s your 
localization set. Here’s a point – actually, it doesn’t matter however you calculated it, 
CG, hit and run, analytic center – it doesn’t matter. What would happen is you call it 
here, and you could do something like this. It could give you a deep cut, basically says, 
don’t bother looking over here. But there’d be no reason that it couldn’t also give you a 
shallow cut like that, that says, don’t bother looking here. No problem. So you just 
incorporate both. So that’s how that works. I mean, that’s kinda obvious. Actually, what’s 
interesting about it is that a lot of these things don’t really make it work much better. 
Okay. Instead of appending one, you append a set of new inequalities. You can also do 
non-linear cuts. So you’ll also find this talked about all over the place. And let’s see, 
these would work – you could have quadratic cuts, where you return – that basically says, 
instead of returning a half space, where the solution, if it exists, must lie, you’d return an 
ellipsoid, basically. And there’d be plenty of cases where something like this would 
work, if your inequalities were quadratic or something like that. In this case, the 
localization set is no longer a polyhedron, but that doesn’t really matter. I mean, in 
particular, things like ACCPM, they work just fine.  

So these are kind of obvious and the ones, however, that are quite useful, and also quite 
strange and mysterious, is the idea of dropping constraints. So dropping constraints 
would go like this: after a while, you generate a big pile of constraints. So what happened 
was, you started with a whole bunch of inequalities. At each step, you have added at least 
one inequality to your set. So what’s happening is the polyhedron, the data structure that 
describes your current ignorance, is growing in size as you go. And that means, for 
example, whatever work you’re gonna do on it is also gonna grow in size. I mean, like 
grow linearly or polyhedrally – sorry, like polynomially. But at least it’s gonna grow 
linearly. When you add these, there’s the option of deleting dropping constraints. So then 
how do you drop constraints? The most obvious this is the following: here’s your current 
set. And here are some redundant inequalities. So one obvious thing is to call a method 
on your current polyhedron, which is minimal. And what minimal does is it goes through 
every inequality, and drops the ones that are redundant. By the way, how do you find a 
redundant inequality? Suppose I give you a polyhedron and I point to the 15th constraint 
and I ask you, “Is it redundant?” How do you do that? How about that first one? How do 
I know if the first inequality is redundant in a polyhedron? Got any ideas?  



Student:If it’s linearly dependent on other columns?  

Instructor (Stephen Boyd):No, that might be wrong, because the b it connects into. But 
that would be one. That’s how you detect linear – that’s linear equality equations being 
dependent. But that’s – it beats relatedness, but there’s actually really only one real way 
to do this.  

Student:Consult an LP and see if it’s strictly feasible?  

Instructor (Stephen Boyd):You got it. Here’s what you do. You want to know if a1 
transpose x less than bi is redundant. Actually, there’s a very sophisticated way to do it, 
but this is very simple, basic, everyone understands it. Here’s what you do. You 
maximize a1 transpose x over the remaining inequalities. That’s an LP. Now, the optimal 
value of that LP is either less than or bigger than b1. If the maximum of this over b1 is 
less than or equal to b1, what can you say about the inequality? Redundant. So that’s one 
way to do it. Otherwise, actually, what that method will do is it will either produce a 
point that satisfies all the other inequalities, but not that one, or it will produce, basically, 
a certificate proving that inequality’s redundant. And actually, if we get back to your 
suggestion about linear dependents and stuff like that, there’s more sophisticated ways. In 
fact, is it relevant? I don’t know. That’s a great homework problem in 364a, but I guess 
this isn’t 364a. Anyway, the question would be, how do you find out if the first five 
inequalities are redundant. You should think about that. Okay. You could implement a 
method that was called polyhedron.reduce, and it would just go through and solve one LP 
for each constraint. So it would check an LP for each constraint and drop that. Now, if, 
by the way, the subgradient calls are fantastically expensive, the subgradient calls are 
cutting-plane oracle calls. If the cutting-plane oracle calls require a network of computers 
to fire up and the wind tunnel at NASA aims to get fired up and all that kind of stuff, then 
no problem calling localization polyhedron.reduce. No problem. But in a lot of cases, that 
would actually be too much – to solve whatever k LPs would actually – anyway, okay. 
There’s gonna be cheap ways to drop constraints, and there’s safe and unsafe constraint 
dropping. Safe constraint dropping goes like this: you drop constraints that, without 
actually solving an LP, you know are going to be redundant. We’ll see how that’s done 
with analytics and cutting plane. Very cheaply. That’s one method.  

And the other method is the unsafe method, is you just drop constraints, whether or not 
they are redundant. That method works, by the way, really well. Capital N here. It seems 
sort of like the word on the streets is that if capital N is five little n, everything’s cool. 
There are some proofs of this and all that, but they’re very complicated, as you might 
imagine. When you are dropping constraints that are not redundant, you are increasing 
the volume of that set. That’s our merit function. So now the proofs get very tricky. And 
you have to show that your constraint dropping method is increasing the volume of the 
localization set more slowly or roughly than your cutting planes are reducing it. So that 
would be it. But the fact is that we’ll see something like N equals 3 to 5 n works, 
apparently, very well. Okay. In fact, there’s a shock. We’ll see it next lecture, which is 
gonna come up very soon. What’s weird is you can actually drop constraints, and the 
method will do better. I know it’s a bit weird, but it’s also true. It can happen. Okay. 



Another variation on this is so-called epigraph cutting-plane method. If you have – it 
works like this. You put the problem into epigraph form like this, and what you’re really 
going to do is get a cutting-plane oracle for this problem here. So this is the problem. And 
what you want to do is you want to separate x and t. So x should be considered as your 
current proposal for x, or something like that. And t is to be considered here and upper 
bound on the objective. And you’re gonna separate this from x*, p* where p* is the 
optimal value. Now the way to do that is this, if the current point is infeasible for the 
original problem, and violated the jth constraint, you add a cutting plane that is associated 
with that violated constraint. And this is a deep cut here. I guess this is positive by 
definition. This is a deep cut here, this one, where you get a subgradient of the violated 
constraint here. And this is a deep cut here. And you can also just put this with zero here 
and that would be a neutral cut for the same problem.  

Now, if x(k) if feasible for the original problem, you can actually add two cutting planes. 
And the two cutting planes you can add are this. This is a deep cut here. This is a deep cut 
that you add in x and t here. And this here is actually something that says that the current 
point, that’s the objective value because feasible, t, which is supposed to be an upper 
bound on the optimal value, is clearly less than that, so you can add that one, as well. And 
this requires getting a subgradient of the objective. So that’s how you do this in a – you 
can run a cutting-plane method in the epigraph. Okay. Now you can also get a lower 
bound. We’ll get to some of these in a minute. This is related to something called 
Kelley’s method. But suppose you evaluated a function, f, and a subgradient of f at q 
points. So it doesn’t need to be convex, but of course, it has to have subgradient. What 
that means is that f(z), by definition, means f(z) is bigger than this, all z. So it says that 
this is an affine global lower estimate on f. Well obviously if f(z) is bigger than each of 
these, it’s bigger than the max. So you can write it this way. And this piecewise linear 
function here, we’re going to call that f hat. So it’s a very useful way to think of what it 
means if you get a subgradient at a bunch of different points, a single subgradient will 
give you an affine lower bound. If you call multiple subgradients, if you get multiple 
subgradients at different points, for example, if its an algorithm and your k steps in, and 
at each step you’ve evaluated subgradient, you actually have a piecewise linear lower 
bound. And that’s this thing. And I’ll draw that. It’s kinda obvious what it is. But let me 
just draw it just to give you the picture of this. So here’s the picture of that, other than R, 
which is kind of a stupid example. Here’s your function. And let’s suppose I’ve evaluated 
the – radiant, sort of here, you know, and here, and here. And what you do is you simply 
draw these first-order approximations, like this. There you go. Something like that. And 
then this one looks like that. And this function right here that goes like this, that’s a 
piecewise linear lower bound on your function. By the way, if you minimize that, you get 
this point here, and that’s clearly a lower bound on your function. The point is that once 
you evaluated a couple of – not a couple, but in fact, n + 1 subgradients of a function in 
Rn – if you evaluated n + 1 subgradients in Rn, then generically, you can now produce a 
lower bound on that function. The cost is solving an LP. So what happens is this, if you 
replace f0 and fi by their polyhedral under-approximators, then solve this problem, which 
is an LP. Well, it’s not an LP, but it can be converted to an LP. You know how to do that.  



So if you convert this to an LP and solve it, I guess this one’s trivial, and this one you 
introduce one epigraph variable t, you get an LP. You solve that and the optimal value is 
a lower bound. In fact, it’s this value here. By the way, we didn’t mention this. I’ll 
mention it here, because it’s an interesting method. If you solve that LP here, then you 
get a lower bound on the optimal value, and if this is your new point at which to query, 
you get a nice and you get a famous algorithm. So if your next query point is here, and it 
goes like that, that’s called Kelley’s cutting-plane method. And it’s actually quite a good 
method from the ‘50s, I think. Either ‘50s or ‘60s, one or the other. That’s Kelley’s 
cutting-plane method. And what would happen is when you add this, your lower bound 
goes up there. And your next point in here. And you can actually see in this case it’s a 
smooth problem, that it’s gonna do pretty well. It’s not hard to show that it converges and 
so on. A small modification of Kelley’s cutting plane method, actually, makes it work 
really well in practice, and it’s not clear from this picture why it wouldn’t. But of course, 
pictures are generally in R2 and R3. And that’s not where – there’s no interesting 
problems. These aren’t real optimization problems. Real optimization problems go down 
in like R10 minimum. They get mildly interesting in R100. And actually are real honest 
problems in R100K, or something like that, where your intuition in drawing pictures isn’t 
going to cut it even close. Okay. Let’s see. So we’ll go on and do the analytic ACCPM. 
Okay. So we’ll look at ACCPM. I think this is sort of – I’m not sure, but I guess I’d 
probably put this at the if someone needed to run one of these non-differentiable methods 
or something like that, a cutting-plane oracle, or something, and you actually really 
needed to do this, I think this is probably – depends on the situation – but this is probably 
the algorithm of choice. We’ll look at that. And there’s a couple of things we have to talk 
about. So the first is, is just to remind you what the analytic center is.  

Again, this is not correct. Oh, unless – well, this is wrong. This notation universally 
defines p to be this set, and this is not a function of p. It’s really a function of the 
inequalities. But we’ll leave this and just understand that that’s slang. So what you have 
to do is you have to maximize the product of the slacks in a polyhedron. And that can be 
done by Newton’s method. This is completely smooth. It’s actually self-important. So 
that means if you’re gonna give a complexity theory result for it, you’re already well on 
your way. And here’s the ACCPM algorithm. You start with a polyhedron. By the way, it 
doesn’t have to be even a polyhedron, but it doesn’t matter. You start with a polyhedron 
known to contain the target set. Then you go this, you calculate the analytic center, you 
query the cutting-plane oracle. The cutting-plane oracle can tell you that you’re done, in 
which case you quit. Otherwise, it returns a cutting-plane inequality, that’s this, and that 
is appended to p, the description of p. Now if this polyhedron is empty, then you can 
announce that capital X, the target set, is empty and quit. Otherwise, you increment k and 
repeat. So that’s ACCPM. Let’s see, for constructing cutting planes, I think we’ve 
actually looked at a bunch of this before, but we’ll go over it anyway. If you have an 
inequality constrain problem, then you do the following: if x is not feasible, you choose 
any violated constraint and do an added deep cut. If it’s feasible, you can do a deep 
objective cut. And the deep objective cut is given by you maintain the best value you’ve 
found so far, and you add this. So that’s a deep objective cut. You get the analytic center. 
You have to solve this, and there’s lots of ways to do that. But there is one issue, and 
that’s this. You’re not given a point in the domain of this function. So that’s actually the 



challenge here. And there’s lots of ways to get around this. One, of course, is to use a 
phase one method to find a point in the domain. And that actually will have the advantage 
here of if you do that, the advantage here is going to be that that will surely, in a graceful 
way, determine if this thing is empty. If it’s not empty, you can use a standard newton 
Method to get the analytic center. You don’t have to use an infeasible start Newton 
method. And there’s one more method, which is you can actually solve dual. You do the 
dual of this analytic centering problem. And if you think about why that will work very 
nicely, you have a set of inequalities, the dual has a single variable for each inequality. If 
you add an inequality, you’re actually adding a new variable to the dual. And so, there 
the initialization is easier.  

So that’s yet another method. Infeasible start Newton method, actually, the truth is I 
didn’t cover it, really, at all in 364a. It’s in the book and stuff like that. But here it is. I 
covered it maybe too fast. You want to minimize this separable convex function subject 
to y equal b minus ax, so we introduce this new variable, y. And the way it’s gonna work 
is this: the infeasible start Newton method does not require the points to be feasible. The 
traditional Newton method you must start with a feasible point and every direction you 
generate is in the null space of a, and so the points remain feasible. So it’s a feasible 
method. Infeasible start Newton method, you don’t have to be feasible. So here’s the way 
you would solve this problem. You initialize x as anything you like, zero, the last x you 
found, some guess, or something like that. And a good – the radical method is to initialize 
all these y’s to be, for example, one. Why not? That’s a point nice and squarely in the 
domain of the objective, which is the sum of logs. When you do that, obviously, this 
equality constraint is not satisfied, unless you’re really, really lucky. Unless it turns out 
that your x. So this is the initialization. So here would be a common choice. Suppose you 
had to guess x previous. You could choose y to be the following: you would evaluate 
each bi minus ai transpose x, that’s the ith row here, and if that’s positive, no harm. 
Leave yi to be equal to that. If it’s positive, it’s in the domain of log y. And there might 
be a little threshold value, but small enough you don’t. Otherwise, you just set yi to be 
one. So what happens, then, is these equality constraints here are some are already 
satisfied. But anyone where this is not the case are not satisfied. So that’s how that works. 
By the way, this infeasible start Newton method is very cool. It has the property that if 
any constraint, literally coordinate by coordinate, is satisfied at any step, it will be 
satisfied forever afterward. So for example, if there’s 100 inequalities here and 80 of 
these are satisfied immediately, but 20 are violated – or let’s make it even simpler.  

Let’s do cutting-plane method. So in a cutting-plane method, you just solve the problem 
with 99 inequalities. You added one inequality, and now you have 100. You satisfied all 
the 99, because you were actually at the analytic center of those 99. However, the new 
constraint you add, you for sure violated. Well, you might just have equal to zero. It 
might be just – if it’s a neutral cut. If it’s a deep cut, you’re guaranteed to violate that 
point. But then what’s cool about that is only that one – you have 99 equality constraints 
here are satisfied and only one is not, which is the new one. Everybody understand? 
Okay. So the method works like this, you define the primal dual, the primal residual is y 
plus ax minus b. Now of course, in standard Newton method, you are always primal 
feasible. So you don’t even have the concept of Rp. Rp is just zero always, initially, every 



step Rp is zero. And it stays Rp because your Newton step is in the null space of a. So no 
matter what step you take in the null space of a, you continue to satisfy ax equals b. In the 
infeasible start Newton method, that’s false. Rp starts off – in fact, it’s guaranteed of the 
original point was not feasible, starts off non-zero. And the dual residual is a transpose nu 
ng plus b plus nu. So these are the components associated with both x and also with y. 
Okay. And here the gradient is very simple to calculate. It’s simply the vector, which is 
basically one dot with a y minus sign. That’s the gradient. Now the Newton step is 
defined as follows: you actually linearize these equations at the current point. And you’d 
linearize the equations Rp equals zero and Rd equals zero. Now, this equation is already 
linear, so there’s hardly any linearization going on there. This one is not linear, because g 
is a non-linear function of y. And you’ll get something that looks like this. Now, h here is 
the heshen of the objective, so that’s diagonal. You get a and you get a transpose and so 
on. Now that’s a large system. The system is size, I guess, let’s see, I can’t remember the 
dimensions of n and m, but y is going to be m, so that m by m – this is not a small system 
here. It’s quite big. However, this should be screaming structure at you. Screaming at you 
with structure. There’s tons of zero’s, there’s i’s. This is diagonal. There’s a and there’s a 
transpose. So you should have an overwhelming and uncontrollable urge to apply a smart 
method to solve these equations. And in fact, you can do this by eliminating various 
blocks and things like that. Instead of having a complexity, which is cubic and m plus n, 
you’ll actually do much better.  

What’ll happen is, you can actually solve them by calculating delta x this way and delta y 
that way, and so on. Now when you calculate delta x, you have a couple of different 
methods for actually computing delta x. One is you actually form this matrix. And in fact, 
here you can exploit any structure in a to form this matrix. But this matrix, you can – 
even if the matrix is dense, you can exploit structure informing it. That would be one 
method. If this multiplied out matrix here, if this heshen is actually has structure, you 
could use a Sparse Cholesky Factorization or dense or something like that. And the other 
method for solving this, and this would be probably the method that would be not 
frowned upon by people who do numerical things, if you just simply worked out what 
this is, this delta x is the solution of this least squares problem. If you actually form this 
matrix, a transpose ha, I guess that’s a – most people who do numerical things would 
consider that a misdemeanor. It’s called squaring up. So whereas, over here, you never 
actually form this matrix, which has, whatever, the square of the condition number of this 
thing here. So this is another way to do it. And by the way, the h halves don’t have to 
scare you, because they’re actually diagonal. And this is nothing but a diagonal least 
squares problem. So here’s the infeasible start Newton method. You start with a point, x, 
arbitrary. And y has to be positive. It could be all ones or that initialization we talked 
about before. You have your usual parameters. And what you do is you calculate the 
Newton step in delta x, delta y, and delta nu. And you do a backtracking line search. In 
infeasible start Newton method, you cannot use the function value to do a line search. 
That’s completely obvious because you’re infeasible, so your objective, actually, can be 
very, very good. Very good. It’s just totally irrelevant because you’re not even feasible.  

And you really can’t – anyway, it would make no sense. And in fact, you could easily see 
the method would fail, because you initialize it at any point that’s infeasible, but has an 



objective value that is better than the optimal objective value, which of course, is higher 
because it requires feasibility. Then if you did a line search or just a numeric function, the 
function value you’d never get to the optimal point. That would pay off. Instead, what 
you do is you do a line search on the norm of the residual. And that’s easy enough to do. 
The simple way is something like y plus t delta y is not positive, you could do this. By 
the way, related to the question you asked earlier about this, it’s actually must more 
common. In fact – it doesn’t matter. You can either t time equal beta in a while loop here, 
and simply find out if you’re positive. But the fact is, you’d probably immediately, if 
you’re writing this in a real language, what you’d really do is you’d go here, you’d get y 
and you’d get delta y, and you’d quickly calculate the largest t for which this is still the 
case. And then you’d take the minimum of that t multiplied by 0.99 and 1. So that’d be 
your minimum. And then you’d check. You’d drop down to this one. And then you’d t 
times equal beta over here until this is satisfied. And then you update. Now there’s 
actually some pretty cool things about this method. This method has several properties. 
I’ll just mention them and you will see them at some point soon. Maybe on Homework 5. 
I don’t know. You’ll see them. One interesting point about it is this, if you ever take a 
step size of one, then all equality constraints become satisfied on the next iterate. And 
they will always be satisfied from then on. That’s one property. Another one is if any of 
the individual equality constraints is satisfied, ever, at some step, it will be satisfied 
forever on.  

Actually, that’s unlikely to occur during the algorithm, so probably the better way to say 
that is something like this, any equality constraints initially satisfied will remain satisfied 
during the algorithm. Then there will be a point at which you take a step size of one, after 
which all equality constraints will be satisfied. That’s how that works. Okay. I think I 
already said all these things. There’s a couple things to mention. This method does not 
work gracefully if there is no feasible point. Feasible means there’s no point in the 
domain. So there’s no positive y for which y equals ax minus b, or something like that – b 
minus ax, y is b minus ax. There’s no positive y that satisfies that. And then, of course, 
obviously, what happens is the Newton method churns along. It obviously cannot take a 
step length of one, because if it took a step length of one, the next would be feasible, but 
that’s impossible, so it doesn’t. So there are methods you can do to recognize infeasibility 
and stuff like that, but I think the best way to say it is that infeasible Newton method is 
designed for things, which are going to be feasible. And they just don’t gracefully handle 
infeasible things. Let’s go back to this pruning and I can say something about this. This is 
also material from 364a and in the book, but it’s a big book and 364a we went way fast, 
so I didn’t expect anybody to get it. So we’re just doing backfill now. These are actually 
very, very good things to know. So if you have the analytic center of a polyhedron – 
again, that’s slang – then if you calculate the heshen at the analytic center here, and that 
simply looks like this. It’s nothing but this thing here. The gradient, of course, of the 
analytic center is zero, obviously. That’s the definition of it. Then it turns out the 
following is true: that defines an ellipsoid. In fact, let me say something about the other 
one. Because there’s actually some very good things to know about these. These are in 
the book, I think, but I can’t really remember. Here it is. Here’s a polyhedron. Here’s a 
point, which is not the analytic center. Calculate the heshen, that’s this thing up here. The 
heshen of the log barrier like this, like that. That’s not the analytic center. And this 



ellipsoid here is the set of x such that x minus z transpose h, this is less than one. So 
you’d simply calculate that heshen right there, that formula, without the stars. You 
calculate that heshen. This ellipsoid is guaranteed to be inside that set, always, whether or 
not you’re at the analytic center. That’s gonna come up later, because we’re gonna look 
at another interesting method, very interesting method called the Deacon method.  

So at any point, if you calculate the heshen of the log barrier function, then the ellipsoid 
with a one, defined by that heshen, is inside this set. Period. Let’s go to the analytic 
center. If you go to the analytic center, let’s say that’s here. Then this result holds, 
because it actually holds for any point. So if I draw the ellipsoid like that – I made it too 
small, by the way. You’ll see why in a second. If I draw it with a one, it’s inside the set. 
And what this says is if I draw it with an m2 – let’s see, one, two, three – how many of 
these? Six? So if I draw this ellipsoid with a one, I’m inside it. This result says if I puff 
that up by a factor of m, which is six in this case, you will cover the set. No, I’m gonna 
miss it. I didn’t draw it big enough. But theoretically, if I drew this right, and I puffed up 
that set by a factor of m, I would cover the set. So if you calculate the analytic center, you 
get, actually, an ellipsoidal approximation of your polyhedron. And it’s an ellipsoidal 
approximation that is within sort of a factor of m in radius. In other words, you have an 
inner ellipsoid, you have an ellipsoid guaranteed to be inside. Puff it up by a factor of m, 
guaranteed to be outside. By the way, the fact that this is guaranteed to cover the set is 
not – that’s actually interesting, because if I just give you a polyhedron, and I give you an 
ellipsoid, and I say, “Would you mind checking if your polyhedron is inside my 
ellipsoid,” that’s NP hard, because you have to maximize a convex quadratic function 
over a polyhedron. So you can’t even check if a general one was. So in this case, there’s a 
fast way to verify that this is true. I think that this is easy to show. It might even be – you 
may even do it yourself. Who knows? So what this allows you to do, now – and you’re 
gonna calculate this if you use analytic center cutting-plane method, you had to calculate 
this anyway, because that’s that ah a transpose. That’s all that is.  

So you’ve already calculated all this stuff, anyway. And it turns out that you can now 
define something, which is this irrelevance measure. And it’s this: it’s bi minus ai 
transpose x* divided by this thing. Here’s what you can guarantee now. It’s actually the 
normalized distance from the hyperplane to the outer ellipsoid. And I guess I’m not ever 
sure I need the m here. Is that right? No, I guess you do. Maybe we should make eta go 
between zero and one. Anyway, I don’t know. So here’s what you’re guaranteed. If eta is 
bigger than m, then the constraint is redundant, and that you know without solving an LP. 
And by the way, it’s super cheap, because the fact is, I think you’ve actually already 
calculated at the last step of Newton’s method, I think you’ve actually already calculated 
all these numbers. So I think you have, but we can check. But I’m pretty sure you’ve 
already calculated all these numbers anyway. Or you’re very, very close to getting them. 
Well, we’ll leave it. You have, because you’ve actually factored – it’s cheap, anyway. 
You’ve factored this to calculate the last Newton step. So again, if you’re doing direct 
methods, you’ve factored that, so once you’ve factored that, computing this is actually 
the norm, you have a Cholesky factor of that, this is the norm of L minus 1 ai and that’s 
one back substitution.  



Student: 

[Inaudible].  

Instructor (Stephen Boyd):Hang on here. If you have a whole bunch of constraints in 
describing P, the analytic center cutting-plane method says you’ve gotta calculate that 
heshen. You have to calculate a Newton step to calculate the analytic center. So that’s 
done. You’re gonna already be doing that. Now what is true is that there’s no reason to 
believe that any of – this is safe constraint dropping. In other words, if you drop a 
constraint based on eta being bigger than m, it’s safe. You don’t have to avoid your 
complexity theorist friends and things like that. The proof is still very, very simple, 
because the pruning does not change the set. It changes the description of the set, because 
you dropped irrelevant inequalities, but it does not change the set. So you can hold your 
head high if someone grills you and says, “Are you absolutely certain this method will 
converge?” Then you can say, “Yes.” So that’s safe. There’s no reason to believe, 
actually that this will work. So in fact, what’s generally done is you keep 3n to 5n 
constraints, and you just keep them in order by this. So you drop the ones with the – you 
keep the 3 to 5 n constraints with the smallest values of etai. Now, I can describe it 
another way. Let me describe it another way. Here’s another way to describe this method. 
The method goes like this, and in fact, it’s a perfectly good way to describe it. It goes like 
this: here’s your polyhedron like that. And you calculate the analytic center. Now, you 
change coordinates so that the heshen of the log barrier at that point is i. So in other 
words, what that does it you make your set – you’re rounding your set. You’re making it 
more isotropic. Now, what you know now is that a ball of radius one fits inside your set. 
But a ball of radium m is outside your set, covers your set. So that’s what’s happened. 
And so now, the irrelevance measure is merely the length in those transformed 
coordinates. So you can say all sorts of interesting things about it.  

Actually, it says that no value of eta could possible be less than one. It’s impossible. 
Because at that center, the ball of radius one fits inside your set, and eta is the distance to 
the first hyperplane. So all the eta are bigger than one. Any of the eta’s bigger than m are 
guaranteed to be redundant. That’s the picture in the transformed coordinates. Okay. And 
you get a piecewise linear lower bound. We can go through that. In ACCPM you get that 
trivially, because you get the subgradient. You can form the piecewise linear 
approximations. We know this. And you can actually get this piecewise linear lower 
bound in analytic center cutting-plane method. That’s not surprising because the analytic 
center cutting-plane method calculates an analytic center, but an analytic center is a step 
and a barrier method. When you finish a barrier method, you get a dual feasible point, 
which we know. That’s the basic idea of a barrier method. And so it’s not surprising that 
you’re gonna get a lower bound. The details don’t matter, I think. But the point is that 
this x(k+1), that’s the analytic center of the big thing that’s gonna satisfy something like 
this. And this is maybe better done in the notes, rather than in slides. Anyway, you end up 
with a lower bound from all the stuff you just calculated. And it’s based on the idea that 
you calculated an analytic center, analytic centers are associated with center path, on a 
central path you’ve actually calculated dual feasible points, whether you know it or not. 
Dual feasible points means you have lower bounds on the problem. And so when you put 



all that together, that’s the lower bound right there that you’ve actually calculated. Okay. 
And ACCPM isn’t a decent method. So you keep track of the best point found and so on. 
Let’s just take a look and see how this works. So here’s a problem instance with 20 
variables, 100 terms. So I guess it’s a piecewise linear function. I think it’s the one we’ve 
been using all along. So this is what it is. And I guess the optimal value’s around one. So 
that means 1 percent accuracy. That means 0.1 percent and that means like coordinates of 
accuracy. And this is f minus f*. Obviously, you don’t know this at the time. In this case, 
it’s an LP, and you solve the LP to find f*. And then this shows you the progress. And 
you and see that it’s not a – we can say a lot of things about this plot if you compare it to 
the subgradient plots. This appears to be, and that’s actually correct, so they’re proofs of 
polynomial time converge and everything like that. This appears to be what we’ll call 
linear convergence, because that’s a log scale and there’s like a line that looks like that.  

And that means something like this. That roughly each iteration gives you a constant 
factor of improvement. You can work it out by calculating the slope there. Now, 
subgradient is very different. Subgradient you’re talking like one over square root of k or 
slower convergence. And that doesn’t look like this. It looks like that, and then it gets 
very, very, very slow. Okay. This is actually, if you look at just the best point you found 
so far. We’ll come back and look at some of these later. And this shows you the real 
effort. The real effort is the number of Newton steps required. And in fact, you can see 
here that the infeasible start Newton method at some point jams. So each of these is like a 
constant here, and the width of a tread is the number of Newton steps required to find a 
feasible point and then calculate the analytic center. By the way, things like this, these are 
just appalling. That’s 200 Newton steps or something like that. So this is sort of the 
amateur implementation. The correct method of dealing with this, which would have 
made this thing go like that, would have used something like a phase one there. So phase 
one would be like far superior. This is just to show. And then this shows the bound and 
everything like that. We’re out of time, so we’ll come back and get to this later, although 
I will just show one more thing, which is this, and we’ll talk about it next time. If you 
drop constraints, you do very well. Okay. We’ll just continue here next time.  

[End of Audio]  

Duration: 78 minutes  


