Lecture 2
Linear functions and examples

• linear equations and functions
• engineering examples
• interpretations
Linear equations

consider system of linear equations

\[
\begin{align*}
 y_1 & = a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\
y_2 & = a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\
\vdots & \\
y_m & = a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n
\end{align*}
\]

can be written in matrix form as \(y = Ax \), where

\[
\begin{align*}
y & = \begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_m
\end{bmatrix} \\
A & = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix} \\
x & = \begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}
\end{align*}
\]
a function \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is linear if

- \(f(x + y) = f(x) + f(y) \), \(\forall x, y \in \mathbb{R}^n \)
- \(f(\alpha x) = \alpha f(x) \), \(\forall x \in \mathbb{R}^n \forall \alpha \in \mathbb{R} \)

\(i.e., \) superposition holds

\[f(x + y) = f(x) + f(y) \]
\[f(\alpha x) = \alpha f(x) \]

\[x \quad y \quad x+y \quad f(x) \quad f(y) \quad f(x+y) \]
Matrix multiplication function

- consider function $f : \mathbb{R}^n \to \mathbb{R}^m$ given by $f(x) = Ax$, where $A \in \mathbb{R}^{m \times n}$

- matrix multiplication function f is linear

- **converse** is true: any linear function $f : \mathbb{R}^n \to \mathbb{R}^m$ can be written as $f(x) = Ax$ for some $A \in \mathbb{R}^{m \times n}$

- representation via matrix multiplication is unique: for any linear function f there is only one matrix A for which $f(x) = Ax$ for all x

- $y = Ax$ is a concrete representation of a generic linear function
Interpretations of $y = Ax$

- y is measurement or observation; x is unknown to be determined
- x is ‘input’ or ‘action’; y is ‘output’ or ‘result’
- $y = Ax$ defines a function or transformation that maps $x \in \mathbb{R}^n$ into $y \in \mathbb{R}^m$
Interpretation of a_{ij}

$$y_i = \sum_{j=1}^{n} a_{ij} x_j$$

a_{ij} is gain factor from jth input (x_j) to ith output (y_i)

thus, e.g.,

- ith row of A concerns ith output
- jth column of A concerns jth input
- $a_{27} = 0$ means 2nd output (y_2) doesn’t depend on 7th input (x_7)
- $|a_{31}| \gg |a_{3j}|$ for $j \neq 1$ means y_3 depends mainly on x_1
• $|a_{52}| \gg |a_{i2}|$ for $i \neq 5$ means x_2 affects mainly y_5

• A is lower triangular, i.e., $a_{ij} = 0$ for $i < j$, means y_i only depends on x_1, \ldots, x_i

• A is diagonal, i.e., $a_{ij} = 0$ for $i \neq j$, means ith output depends only on ith input

more generally, sparsity pattern of A, i.e., list of zero/nonzero entries of A, shows which x_j affect which y_i
Linear elastic structure

- x_j is external force applied at some node, in some fixed direction
- y_i is (small) deflection of some node, in some fixed direction

(provided x, y are small) we have $y \approx Ax$

- A is called the compliance matrix
- a_{ij} gives deflection i per unit force at j (in m/N)
Total force/torque on rigid body

- x_j is external force/torque applied at some point/direction/axis
- $y \in \mathbb{R}^6$ is resulting total force & torque on body
 (y_1, y_2, y_3 are x-, y-, z- components of total force,
 y_4, y_5, y_6 are x-, y-, z- components of total torque)
- we have $y = Ax$
- A depends on geometry
 (of applied forces and torques with respect to center of gravity CG)
- jth column gives resulting force & torque for unit force/torque j
Linear static circuit

interconnection of resistors, linear dependent (controlled) sources, and independent sources

- x_j is value of independent source j
- y_i is some circuit variable (voltage, current)
- we have $y = Ax$
- if x_j are currents and y_i are voltages, A is called the impedance or resistance matrix
Final position/velocity of mass due to applied forces

- unit mass, zero position/velocity at $t = 0$, subject to force $f(t)$ for $0 \leq t \leq n$
- $f(t) = x_j$ for $j - 1 \leq t < j$, $j = 1, \ldots, n$
 (x is the sequence of applied forces, constant in each interval)
- y_1, y_2 are final position and velocity (i.e., at $t = n$)
- we have $y = Ax$
- a_{1j} gives influence of applied force during $j - 1 \leq t < j$ on final position
- a_{2j} gives influence of applied force during $j - 1 \leq t < j$ on final velocity
Gravimeter prospecting

\[x_j = \rho_j - \rho_{\text{avg}} \] is (excess) mass density of earth in voxel \(j \);

\(y_i \) is measured \textit{gravity anomaly} at location \(i \), i.e., some component (typically vertical) of \(g_i - g_{\text{avg}} \)

\[y = Ax \]

Linear functions and examples 2–12
• A comes from physics and geometry

• jth column of A shows sensor readings caused by unit density anomaly at voxel j

• ith row of A shows sensitivity pattern of sensor i
Thermal system

- \(x_j \) is power of \(j \)th heating element or heat source
- \(y_i \) is change in steady-state temperature at location \(i \)
- thermal transport via conduction
- \(y = Ax \)
• a_{ij} gives influence of heater j at location i (in °C/W)

• jth column of A gives pattern of steady-state temperature rise due to 1W at heater j

• ith row shows how heaters affect location i
Illumination with multiple lamps

- n lamps illuminating m (small, flat) patches, no shadows
- x_j is power of jth lamp; y_i is illumination level of patch i
- $y = Ax$, where $a_{ij} = r_{ij}^{-2} \max\{\cos \theta_{ij}, 0\}$
 \[(\cos \theta_{ij} < 0 \text{ means patch } i \text{ is shaded from lamp } j)\]
- jth column of A shows illumination pattern from lamp j
Signal and interference power in wireless system

- \(n \) transmitter/receiver pairs
- Transmitter \(j \) transmits to receiver \(j \) (and, inadvertently, to the other receivers)
- \(p_j \) is power of \(j \)th transmitter
- \(s_i \) is received signal power of \(i \)th receiver
- \(z_i \) is received interference power of \(i \)th receiver
- \(G_{ij} \) is path gain from transmitter \(j \) to receiver \(i \)
- We have \(s = Ap, z = Bp \), where

\[
\begin{align*}
a_{ij} &= \begin{cases} G_{ii} & i = j \\ 0 & i \neq j \end{cases} \\
b_{ij} &= \begin{cases} 0 & i = j \\ G_{ij} & i \neq j \end{cases}
\end{align*}
\]

- \(A \) is diagonal; \(B \) has zero diagonal (ideally, \(A \) is ‘large’, \(B \) is ‘small’)

Linear functions and examples
Cost of production

production *inputs* (materials, parts, labor, . . .) are combined to make a number of *products*

- x_j is price per unit of production input j

- a_{ij} is units of production input j required to manufacture one unit of product i

- y_i is production cost per unit of product i

- we have $y = Ax$

- ith row of A is *bill of materials* for unit of product i
production inputs needed

• q_i is quantity of product i to be produced

• r_j is total quantity of production input j needed

• we have $r = A^T q$

total production cost is

$$r^T x = (A^T q)^T x = q^T Ax$$
Network traffic and flows

- n flows with rates f_1, \ldots, f_n pass from their source nodes to their destination nodes over fixed routes in a network.

- t_i, traffic on link i, is sum of rates of flows passing through it.

- Flow routes given by flow-link incidence matrix A_{ij}:

$$A_{ij} = \begin{cases}
1 & \text{flow } j \text{ goes over link } i \\
0 & \text{otherwise}
\end{cases}$$

- Traffic and flow rates related by $t = Af$.

Linear functions and examples 2–20
link delays and flow latency

• let d_1, \ldots, d_m be link delays, and l_1, \ldots, l_n be latency (total travel time) of flows

• $l = A^T d$

• $f^T l = f^T A^T d = (Af)^T d = t^T d$, total # of packets in network
Linearization

• if $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is differentiable at $x_0 \in \mathbb{R}^n$, then

$$x \text{ near } x_0 \implies f(x) \text{ very near } f(x_0) + Df(x_0)(x - x_0)$$

where

$$Df(x_0)_{ij} = \frac{\partial f_i}{\partial x_j} \bigg|_{x_0}$$

is derivative (Jacobian) matrix

• with $y = f(x)$, $y_0 = f(x_0)$, define input deviation $\delta x := x - x_0$, output deviation $\delta y := y - y_0$

• then we have $\delta y \approx Df(x_0)\delta x$

• when deviations are small, they are (approximately) related by a linear function
Navigation by range measurement

- \((x, y)\) unknown coordinates in plane
- \((p_i, q_i)\) known coordinates of beacons for \(i = 1, 2, 3, 4\)
- \(\rho_i\) measured (known) distance or range from beacon \(i\)
• $\rho \in \mathbb{R}^4$ is a nonlinear function of $(x, y) \in \mathbb{R}^2$:

$$\rho_i(x, y) = \sqrt{(x - p_i)^2 + (y - q_i)^2}$$

• linearize around (x_0, y_0): $\delta \rho \approx A \begin{bmatrix} \delta x \\ \delta y \end{bmatrix}$, where

$$a_{i1} = \frac{(x_0 - p_i)}{\sqrt{(x_0 - p_i)^2 + (y_0 - q_i)^2}}, \quad a_{i2} = \frac{(y_0 - q_i)}{\sqrt{(x_0 - p_i)^2 + (y_0 - q_i)^2}}$$

• ith row of A shows (approximate) change in ith range measurement for (small) shift in (x, y) from (x_0, y_0)

• first column of A shows sensitivity of range measurements to (small) change in x from x_0

• obvious application: (x_0, y_0) is last navigation fix; (x, y) is current position, a short time later
Broad categories of applications

linear model or function $y = Ax$

some broad categories of applications:

- estimation or inversion
- control or design
- mapping or transformation

(this list is not exclusive; can have combinations . . .)
Estimation or inversion

\[y = Ax \]

- \(y_i \) is \(i \)th measurement or sensor reading (which we know)
- \(x_j \) is \(j \)th parameter to be estimated or determined
- \(a_{ij} \) is sensitivity of \(i \)th sensor to \(j \)th parameter

Sample problems:

- find \(x \), given \(y \)
- find all \(x \)'s that result in \(y \) (i.e., all \(x \)'s consistent with measurements)
- if there is no \(x \) such that \(y = Ax \), find \(x \) s.t. \(y \approx Ax \) (i.e., if the sensor readings are inconsistent, find \(x \) which is almost consistent)
Control or design

\[y = Ax \]

- \(x \) is vector of design parameters or inputs (which we can choose)
- \(y \) is vector of results, or outcomes
- \(A \) describes how input choices affect results

Sample problems:

- find \(x \) so that \(y = y_{\text{des}} \)
- find all \(x \)'s that result in \(y = y_{\text{des}} \) (\(i.e. \), find all designs that meet specifications)
- among \(x \)'s that satisfy \(y = y_{\text{des}} \), find a small one (\(i.e. \), find a small or efficient \(x \) that meets specifications)
Mapping or transformation

- x is mapped or transformed to y by linear function $y = Ax$

Sample problems:

- determine if there is an x that maps to a given y
- (if possible) find an x that maps to y
- find all x’s that map to a given y
- if there is only one x that maps to y, find it (i.e., decode or undo the mapping)
Matrix multiplication as mixture of columns

write $A \in \mathbb{R}^{m \times n}$ in terms of its columns:

$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

where $a_j \in \mathbb{R}^m$

then $y = Ax$ can be written as

$$y = x_1 a_1 + x_2 a_2 + \cdots + x_n a_n$$

(x_j’s are scalars, a_j’s are m-vectors)

- y is a (linear) combination or mixture of the columns of A
- coefficients of x give coefficients of mixture
an important example: \(x = e_j \), the \(j \)th unit vector

\[
e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \quad \ldots \quad e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}
\]

then \(Ae_j = a_j \), the \(j \)th column of \(A \)

\(e_j \) corresponds to a pure mixture, giving only column \(j \)
Matrix multiplication as inner product with rows

write A in terms of its rows:

$$A = \begin{bmatrix} \tilde{a}_1^T \\ \tilde{a}_2^T \\ \vdots \\ \tilde{a}_n^T \end{bmatrix}$$

where $\tilde{a}_i \in \mathbb{R}^n$

then $y = Ax$ can be written as

$$y = \begin{bmatrix} \tilde{a}_1^T x \\ \tilde{a}_2^T x \\ \vdots \\ \tilde{a}_m^T x \end{bmatrix}$$

thus $y_i = \langle \tilde{a}_i, x \rangle$, i.e., y_i is inner product of ith row of A with x
geometric interpretation:

\[y_i = \tilde{a}_i^T x = \alpha \] is a hyperplane in \(\mathbb{R}^n \) (normal to \(\tilde{a}_i \))

\[y_i = \langle \tilde{a}_i, x \rangle = 0 \]

\[y_i = \langle \tilde{a}_i, x \rangle = 3 \]

\[y_i = \langle \tilde{a}_i, x \rangle = 2 \]

\[y_i = \langle \tilde{a}_i, x \rangle = 1 \]
Block diagram representation

\(y = Ax \) can be represented by a *signal flow graph* or *block diagram*

e.g. for \(m = n = 2 \), we represent

\[
\begin{bmatrix}
 y_1 \\
 y_2
\end{bmatrix} = \begin{bmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{bmatrix} \begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}
\]

as

\(x_1 \rightarrow a_{11} \rightarrow y_1 \)

\(x_2 \rightarrow a_{22} \rightarrow y_2 \)

\(a_{ij} \) is the gain along the path from \(j \)th input to \(i \)th output

• (by not drawing paths with zero gain) shows sparsity structure of \(A \)

\(\text{e.g., diagonal, block upper triangular, arrow . . . } \)
example: block upper triangular, \(i.e., \)

\[A = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} \]

where \(A_{11} \in \mathbb{R}^{m_1 \times n_1}, A_{12} \in \mathbb{R}^{m_1 \times n_2}, A_{21} \in \mathbb{R}^{m_2 \times n_1}, A_{22} \in \mathbb{R}^{m_2 \times n_2} \)

partition \(x \) and \(y \) conformably as

\[x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \]

\((x_1 \in \mathbb{R}^{n_1}, x_2 \in \mathbb{R}^{n_2}, y_1 \in \mathbb{R}^{m_1}, y_2 \in \mathbb{R}^{m_2}) \) so

\[y_1 = A_{11}x_1 + A_{12}x_2, \quad y_2 = A_{22}x_2, \]

\(i.e., y_2 \) doesn’t depend on \(x_1 \)
block diagram:

\[x_1 \rightarrow A_{11} \rightarrow y_1 \]
\[A_{12} \]
\[x_2 \rightarrow A_{22} \rightarrow y_2 \]

... no path from \(x_1 \) to \(y_2 \), so \(y_2 \) doesn’t depend on \(x_1 \).
Matrix multiplication as composition

for $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, $C = AB \in \mathbb{R}^{m \times p}$ where

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

composition interpretation: $y = Cz$ represents composition of $y = Ax$ and $x = Bz$

(note that B is on left in block diagram)
can write product $C = AB$ as

$$C = \begin{bmatrix} c_1 & \cdots & c_p \end{bmatrix} = AB = \begin{bmatrix} Ab_1 & \cdots & Ab_p \end{bmatrix}$$

i.e., ith column of C is A acting on ith column of B

similarly we can write

$$C = \begin{bmatrix} \tilde{c}_1^T \\ \vdots \\ \tilde{c}_m^T \end{bmatrix} = AB = \begin{bmatrix} \tilde{a}_1^T B \\ \vdots \\ \tilde{a}_m^T B \end{bmatrix}$$

i.e., ith row of C is ith row of A acting (on left) on B
Inner product interpretation

inner product interpretation:

\[c_{ij} = \tilde{a}_i^T b_j = \langle \tilde{a}_i, b_j \rangle \]

i.e., entries of \(C \) are inner products of rows of \(A \) and columns of \(B \)

- \(c_{ij} = 0 \) means \(i \)th row of \(A \) is orthogonal to \(j \)th column of \(B \)

- **Gram matrix** of vectors \(f_1, \ldots, f_n \) defined as \(G_{ij} = f_i^T f_j \)

 (gives inner product of each vector with the others)

- \(G = [f_1 \cdots f_n]^T[f_1 \cdots f_n] \)
Matrix multiplication interpretation via paths

- $a_{ik} b_{kj}$ is gain of path from input j to output i via k
- c_{ij} is sum of gains over all paths from input j to output i