Lecture ³Linear algebra review

- vector space, subspaces
- independence, basis, dimension
- range, nullspace, rank
- change of coordinates
- norm, angle, inner product

Vector spaces

- a *vector space* or *linear space* (over the reals) consists of
- a set $\mathcal V$
- a vector sum $+:\mathcal{V}\times\mathcal{V}\rightarrow\mathcal{V}$
- $\bullet\,$ a scalar multiplication : $\textbf{R}\times\mathcal{V}\rightarrow\mathcal{V}$
- \bullet a distinguished element $0 \in \mathcal{V}$

which satisfy ^a list of properties

- $\bullet \ \ x+y=y+x, \quad \ \forall x,y\in \mathcal{V} \quad \ (+ \text{ is commutative})$
- $(x + y) + z = x + (y + z)$, $\forall x, y, z \in \mathcal{V}$ (+ is associative)
- \bullet $0 + x = x$, $\forall x \in \mathcal{V}$ $(0 \text{ is additive identity})$
- $\forall x \in \mathcal{V} \; \; \exists (-x) \in \mathcal{V}$ s.t. $x + (-x) = 0$ (existence of additive inverse)
- $\bullet \ \ (\alpha \beta) x = \alpha(\beta x), \quad \forall \alpha, \beta \in \mathbf R \quad \forall x \in \mathcal V \quad \text{(scalar mult. is associative)}$
- $\alpha(x + y) = \alpha x + \alpha y$, $\forall \alpha \in \mathbf{R} \ \forall x, y \in \mathcal{V}$ (right distributive rule)
- $\bullet \ \ (\alpha + \beta)x = \alpha x + \beta x, \quad \forall \alpha, \beta \in \mathbf{R} \quad \forall x \in \mathcal{V}$ (left distributive rule)
- 1 $x = x$, $\forall x \in \mathcal{V}$

Examples

- \bullet ${\cal V}_1 = {\bold R}^n$, with standard (componentwise) vector addition and scalar multiplication
- $\bullet\;\; \mathcal{V}_2 = \{0\}\;$ (where $0\in\mathbf{R}^n)$
- $\mathcal{V}_3 = \mathrm{span}(v_1, v_2, \dots, v_k)$ where

$$
\mathrm{span}(v_1, v_2, \dots, v_k) = \{ \alpha_1 v_1 + \dots + \alpha_k v_k \mid \alpha_i \in \mathbf{R} \}
$$

and $v_1, \ldots, v_k \in \mathbf{R}^n$

Subspaces

- a subspace of a vector space is a subset of a vector space which is itself ^a vector space
- roughly speaking, ^a subspace is closed under vector addition and scalar multiplication
- $\bullet\,$ examples $\mathcal{V}_1,\ \mathcal{V}_2,\ \mathcal{V}_3$ above are subspaces of \mathbf{R}^n

Vector spaces of functions

 $\mathcal{V}_4 = \{x : \mathsf{R}_+ \to \mathsf{R}^n\}$ functions: $^n\mid x$ is differentiable $\}$, where vector sum is sum of |

$$
(x+z)(t) = x(t) + z(t)
$$

and scalar multiplication is defined by

$$
(\alpha x)(t) = \alpha x(t)
$$

(a *point* in \mathcal{V}_4 is a *trajectory* in \mathbf{R}^n $\left(\begin{matrix} n \end{matrix} \right)$

- $\mathcal{V}_5 = \{x \in \mathcal{V}_4 \mid \dot{x} = Ax\}$ (*points* in \mathcal{V}_5 are *trajectories* of the linear system $\dot{x} = Ax$)
- $\bullet\;\mathcal{V}_5$ is a subspace of \mathcal{V}_4

Independent set of vectors

a set of vectors $\{v_1, v_2, \ldots, v_k\}$ is *independent* if

$$
\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_k v_k = 0 \Longrightarrow \alpha_1 = \alpha_2 = \dots = 0
$$

some equivalent conditions:

 \bullet coefficients of $\alpha_1v_1+\alpha_2v_2+\cdots+\alpha_kv_k$ are uniquely determined, $\it{i.e.},$

$$
\alpha_1v_1 + \alpha_2v_2 + \cdots + \alpha_kv_k = \beta_1v_1 + \beta_2v_2 + \cdots + \beta_kv_k
$$

implies
$$
\alpha_1 = \beta_1, \alpha_2 = \beta_2, \dots, \alpha_k = \beta_k
$$

 $\bullet\,$ no vector v_i can be expressed as a linear combination of the other vectors $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_k$

Basis and dimension

set of vectors $\{v_1, v_2, \ldots, v_k\}$ is a *basis* for a vector space ${\mathcal V}$ if

- \bullet v_1, v_2, \ldots, v_k span \mathcal{V} , i.e., $\mathcal{V} = \mathrm{span}(v_1, v_2, \ldots, v_k)$
- $\bullet \ \{v_1, v_2, \ldots, v_k\}$ is independent

equivalent: every $v \in \mathcal{V}$ can be uniquely expressed as

$$
v = \alpha_1 v_1 + \dots + \alpha_k v_k
$$

fact: for a given vector space $\mathcal V$, the number of vectors in any basis is the same

number of vectors in any basis is called the *dimension* of $\mathcal V$, denoted $\operatorname{\mathbf{dim}}\mathcal V$ (we assign $\operatorname{\mathbf{dim}}\{0\}=0$, and $\operatorname{\mathbf{dim}}\mathcal{V}=\infty$ if there is no basis)

Nullspace of ^a matrix

the *nullspace* of $A \in \mathbf{R}^{m \times n}$ is defined as

$$
\mathcal{N}(A) = \{ x \in \mathbf{R}^n \mid Ax = 0 \}
$$

- $\bullet\,\,{\cal N}(A)$ is set of vectors mapped to zero by $y=Ax$
- $\bullet \,\, \mathcal{N}(A)$ is set of vectors orthogonal to all rows of A

 $\mathcal{N}(A)$ gives *ambiguity* in x given $y = Ax$:

- if $y = Ax$ and $z \in \mathcal{N}(A)$, then $y = A(x + z)$
- \bullet conversely, if $y = Ax$ and $y = A\tilde{x}$, then $\tilde{x} = x + z$ for some $z \in \mathcal{N}(A)$

Zero nullspace

 A is called *one-to-one* if 0 is the only element of its nullspace: $\mathcal{N}(A) = \{0\} \Longleftrightarrow$

- x can always be uniquely determined from $y = Ax$ $(\emph{i.e.,}$ the linear transformation $y = Ax$ doesn't 'lose' information)
- $\bullet\,$ mapping from x to Ax is one-to-one: different x 's map to different y 's
- $\bullet\,$ columns of A are independent (hence, a basis for their span)
- A has a *left inverse*, *i.e.*, there is a matrix $B \in \mathbb{R}^{n \times m}$ s.t. $BA = I$

• $\bullet \ \det(A^T A) \neq 0$

(we'll establish these later)

Interpretations of nullspace

suppose $z \in \mathcal{N}(A)$

 $y=Ax$ represents **measurement** of x

- $\bullet\,$ z is undetectable from sensors get zero sensor readings
- $\bullet \; x$ and $x+z$ are indistinguishable from sensors: $Ax=A(x+z)$

 $\mathcal{N}(A)$ characterizes *ambiguity* in x from measurement $y = Ax$ $y = Ax$ represents $\bm{\mathrm{output}}$ resulting from input x

- $\bullet\,$ z is an input with no result
- $\bullet\;x$ and $x+z$ have same result

 $\mathcal{N}(A)$ characterizes *freedom of input choice* for given result

Range of ^a matrix

the *range* of $A \in \mathbf{R}^{m \times n}$ is defined as

$$
\mathcal{R}(A) = \{Ax \mid x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m
$$

 $\mathcal{R}(A)$ can be interpreted as

- $\bullet\,$ the set of vectors that can be 'hit' by linear mapping $y=Ax$
- $\bullet\,$ the span of columns of A
- $\bullet\,$ the set of vectors y for which $Ax=y$ has a solution

Onto matrices

 A is called *onto* if $\mathcal{R}(A) = \mathbf{R}^m \Longleftrightarrow$

- \bullet $Ax = y$ can be solved in x for any y
- $\bullet\,$ columns of A span ${\mathbf R}^m$
- A has a *right inverse*, *i.e.*, there is a matrix $B \in \mathbb{R}^{n \times m}$ s.t. $AB = I$
- $\bullet\,$ rows of A are independent
- $\mathcal{N}(A^T) = \{0\}$
- • $\bullet \ \det(AA^T) \neq 0$

(some of these are not obvious; we'll establish them later)

Interpretations of range

suppose $v \in \mathcal{R}(A)$, $w \not\in \mathcal{R}(A)$

 $y = Ax$ represents **measurement** of x

- $\bullet\,$ $y=v$ is a *possible* or *consistent* sensor signal
- \bullet $y=w$ is impossible or inconsistent; sensors have failed or model is wrong

 $y = Ax$ represents $\bm{\mathrm{output}}$ resulting from input x

- $\bullet \;\, v$ is a possible result or output
- $\bullet \;\, w$ cannot be a result or output

 $\mathcal{R}(A)$ characterizes the *possible results* or *achievable outputs*

Inverse

 $A \in \mathbf{R}^{n \times n}$ is *invertible* or *nonsingular* if $\det A \neq 0$ equivalent conditions:

- $\bullet\,$ columns of A are a basis for \mathbf{R}^n
- rows of A are a basis for \mathbf{R}^n
- $\bullet\,\,y=Ax$ has a unique solution x for every $y\in\textbf{R}^n$
- A has a (left and right) inverse denoted $A^{-1} \in \mathbf{R}^{n \times n}$, with $AA^{-1}=$ $= A^{-1}A = I$
- $\mathcal{N}(A) = \{0\}$
- $\mathcal{R}(A) = \mathbf{R}^n$
- • \bullet det $A^T A = \det A A^T \neq 0$

Interpretations of inverse

suppose $A\in\mathbf{R}^n$ $^{\times n}$ has inverse $B=A^{-1}$

- mapping associated with B undoes mapping associated with A (applied either before or after!)
- $\bullet\ \ x=By$ is a perfect (pre- or post-) *equalizer* for the *channel* $y=Ax$
- $\bullet \ \ x=By$ is unique solution of $Ax=y$

Dual basis interpretation

- $\bullet\,$ let $\,a_{i}\,$ be columns of A , and $\,\tilde{b}_{i}^{T}\,$ i^T be rows of $B=A^{-1}$
- from $y = x_1a_1 + \cdots + x_na_n$ $_n$ and $x_i =$ \tilde{b}^T_i $\frac{\textbf{\textit{i}}}{\textbf{\textit{i}}}$ y , we get

$$
y = \sum_{i=1}^{n} (\tilde{b}_i^T y) a_i
$$

thus, inner product with *rows of inverse matrix* gives the coefficients in the expansion of ^a vector in the columns of the matrix

• $\tilde{b}_1, \ldots, \tilde{b}$ \tilde{b}_n $_n$ and a_1, \ldots, a_n $_n$ are called *dual bases*

Rank of ^a matrix

we define the *rank* of $A \in \mathbf{R}^{m \times n}$ as

 $\mathsf{rank}(A) = \mathsf{dim}\,\mathcal R(A)$

 \qquad (nontrivial) $\>$ facts:

- rank (A) = rank (A^T)
- $\bullet\;$ rank (A) is maximum number of independent columns (or rows) of A hence $\textsf{rank}(A) \leq \textsf{min}(m,n)$
- rank (A) + dim $\mathcal{N}(A) = n$

Conservation of dimension

interpretation of $\textsf{rank}(A) + \dim \mathcal{N}(A) = n$:

- $\bullet\;$ rank (A) is dimension of set 'hit' by the mapping $y= Ax$
- \bullet dim $\mathcal{N}(A)$ is dimension of set of x 'crushed' to zero by $y = Ax$
- 'conservation of dimension': each dimension of input is either crushedto zero or ends up in output
- roughly speaking:
	- $\,n\,$ is number of degrees of freedom in input $\,x$
	- $\mathsf{dim}\,\mathcal{N}(A)$ is number of degrees of freedom lost in the mapping from x to $y = Ax$
	- $-$ rank (A) is number of degrees of freedom in output y

'Coding' interpretation of rank

- rank of product: $\mathsf{rank}(BC) \leq \mathsf{min}\{\mathsf{rank}(B),\ \mathsf{rank}(C)\}$
- hence if $A=BC$ with $B\in\mathbf{R}^{m\times m}$ $r\,$ $r, C \in \mathbf{R}^r$ × n , then $\mathsf{rank}(A) \leq r$
- conversely: if $\mathsf{rank}(A) = r$ then $A \in \mathbf{R}^{m \times n}$ can be factored as $A = BC$ \sim with $B\in\mathbf{R}^{m\times r}$, $C\in\mathbf{F}$ $r, C \in \mathbf{R}^r$ \times n :

$$
\int x \, dx \, dx
$$
\n
$$
\int x \, dx
$$

 \bullet rank $(A)=r$ is minimum size of vector needed to faithfully reconstruct y from x

Application: fast matrix-vector multiplication

- $\bullet\,$ need to compute matrix-vector product $y=Ax,\ A\in{\bf R}^m$ × $\, n$
- A has known factorization $A=BC$, $B \in \mathbf{R}^{m \times r}$
- $\bullet\,$ computing $y=Ax$ directly: mn operations
- \bullet computing $y = Ax$ as $y = B(Cx)$ (compute $z = Cx$ first, then $y = Bz$): $rn + mr = (m+n)r$ operations
- \bullet savings can be considerable if $r \ll \min\{m,n\}$

Full rank matrices

for $A \in \mathbf{R}^{m \times n}$ we always have $\mathsf{rank}(A) \leq \mathsf{min}(m,n)$

we say A is full rank if $\textsf{rank}(A) = \textsf{min}(m,n)$

- for square matrices, full rank means nonsingular
- $\bullet\,$ for $\,$ skinny matrices $(m\ge n)$, full rank means columns are independent
- $\bullet\,$ for $\mathop{\mathsf{fat}}$ matrices $(m\leq n)$, full rank means rows are independent

Change of coordinates

'standard' basis vectors in $\boldsymbol{\mathsf{R}}^n$ $\ ^{n}\colon\left(e_{1},e_{2},\ldots,e_{n}\right)$ where :

$$
e_i = \left[\begin{array}{c} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{array}\right]
$$

 $(1$ in $i\mathsf{th}$ component)

obviously we have

$$
x = x_1e_1 + x_2e_2 + \cdots + x_ne_n
$$

 x_i are called the coordinates of x (in the standard basis)

Linear algebra review

if (t_1, t_2, \ldots, t_n) is another basis for \textbf{R}^n , we have

$$
x = \tilde{x}_1 t_1 + \tilde{x}_2 t_2 + \dots + \tilde{x}_n t_n
$$

where \tilde{x}_i are the coordinates of x in the basis (t_1, t_2, \ldots, t_n)

define
$$
T = [t_1 \ t_2 \ \cdots \ t_n]
$$
 so $x = T\tilde{x}$, hence
\n
$$
\tilde{x} = T^{-1}x
$$

 $(T$ is invertible since t_i are a basis)

 $T^{\rm -1}$ transforms (standard basis) coordinates of x into t_i -coordinates

inner product i th row of $T^{\pm 1}$ with x extracts t_i -coordinate of x

consider linear transformation $y = Ax$, $A \in \mathbf{R}^{n \times n}$

express y and x in terms of $t_1, t_2 \ldots, t_n$:

$$
x = T\tilde{x}, \quad y = T\tilde{y}
$$

so

$$
\tilde{y} = (T^{-1}AT)\tilde{x}
$$

- $\bullet\;\,A\longrightarrow T^{-1}AT$ is called *similarity transformation*
- \bullet similarity transformation by T expresses linear transformation $y = Ax$ in coordinates t_1, t_2, \ldots, t_n

(Euclidean) norm

for $x\in\textbf{R}^n$ we define the (Euclidean) norm as

$$
||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{x^T x}
$$

 $\Vert x \Vert$ measures length of vector (from origin)

important properties:

- $\bullet~~ \Vert \alpha x \Vert = |\alpha| \Vert x \Vert$ (homogeneity)
- $\bullet \ \ \|x + y\| \leq \|x\| + \|y\|$ (triangle inequality)
- $\bullet~~ \|x\|\geq 0$ (nonnegativity)
- $\bullet~~ \|x\| = 0 \Longleftrightarrow x = 0 \text{ (definiteness)}$

RMS value and (Euclidean) distance

root-mean-square (RMS) value of vector $x\in\textsf{R}^n$:

$$
\mathbf{rms}(x) = \left(\frac{1}{n}\sum_{i=1}^{n} x_i^2\right)^{1/2} = \frac{||x||}{\sqrt{n}}
$$

norm defines distance between vectors: $\mathop{\bf dist}(x,y) = \|x-y\|$

Inner product

$$
\langle x, y \rangle := x_1 y_1 + x_2 y_2 + \dots + x_n y_n = x^T y
$$

important properties:

- $\bullet \ \langle \alpha x, y \rangle = \alpha \langle x, y \rangle$
- $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- $\langle x, y \rangle = \langle y, x \rangle$
- $\langle x, x \rangle \geq 0$
- $\langle x, x \rangle = 0 \Longleftrightarrow x = 0$

 $f(y) = \langle x, y \rangle$ is linear function : ${\bf R}^n \rightarrow {\bf R}$, with linear map defined by row
vector x^T vector x^T

Linear algebra review

Cauchy-Schwartz inequality and angle between vectors

- $\bullet\,$ for any $x,y\in{\bf R}^n$ $\binom{n}{\cdot}x^T$ $y \leq ||x|| ||y||$
- \bullet (unsigned) angle between vectors in ${\bold R}^n$ defined as

$$
\theta = \angle(x, y) = \cos^{-1} \frac{x^T y}{\|x\| \|y\|}
$$

thus x^T $T y = \|x\| \|y\| \cos \theta$ special cases:

- x and y are aligned: $\theta = 0$; $x^T y = ||x|| ||y||$; (if $x \neq 0$) $y = \alpha x$ for some $\alpha \geq 0$
- x and y are opposed: $\theta = \pi$; $x^T y = -||x|| ||y||$ (if $x \neq 0$) $y = -\alpha x$ for some $\alpha \geq 0$
- x and y are orthogonal: $\theta = \pi/2$ or $-\pi/2$; $x^T y = 0$ denoted $x \perp y$

interpretation of $x^Ty > 0$ and $x^Ty < 0$:

- • $\bullet \ \ x^Ty > 0$ means $\angle(x,y)$ is acute
- • $\bullet \ \ x^Ty < 0$ means $\angle(x,y)$ is obtuse

 $\{x\mid x^Ty\leq 0\}$ defines a *halfspace* with outward normal vector y , and boundary passing through 0

