EE263 Autumn 2007-08 Stephen Boyd

Lecture 11
Eigenvectors and diagonalization

e cigenvectors

e dynamic interpretation: invariant sets

e complex eigenvectors & invariant planes
o left eigenvectors

e diagonalization

e modal form

e discrete-time stability
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Eigenvectors and eigenvalues

A\ € Cis an eigenvalue of A € C"*" if

X(\) = det(A\] — A) = 0

equivalent to:

e there exists nonzero v € C" s.t. (Al — A)v =0, i.e.,
Av = v
any such v is called an eigenvector of A (associated with eigenvalue \)
e there exists nonzero w € C" s.t. w! (A — A) =0, i.e.,
wl' A = w?

any such w is called a left eigenvector of A
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e if v is an eigenvector of A with eigenvalue A, then so is awv, for any
acC a#0

e even when A is real, eigenvalue )\ and eigenvector v can be complex

e when A and X are real, we can always find a real eigenvector v
associated with \: if Av=Xv, with A€ R"™"” AR, and v e C"
then

ARv = ARv, ASv = ASv
so v and v are real eigenvectors, if they are nonzero
(and at least one is)

e conjugate symmetry: if A is real and v € C" is an eigenvector
associated with A € C, then ¥ is an eigenvector associated with \:

taking conjugate of Av = Av we get Av = \v, so
AT = \U
we’ll assume A is real from now on . . .
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Scaling interpretation

(assume A € R for now; we'll consider A € C later)

if v is an eigenvector, effect of A on v is very simple: scaling by \

Ax

Av

(what is A here?)
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e e R, N> 0: vand Av point in same direction
e AeR, A< 0: vand Av point in opposite directions

e ¢ R, |\ <1: Av smaller than v

e A€eR, |\l >1: Av larger than v

(we'll see later how this relates to stability of continuous- and discrete-time
systems. . . )
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Dynamic interpretation

suppose Av = Av, v # 0
if # = Az and 2(0) = v, then z(t) = e*v

several ways to see this, e.g.,

A2
x(t):etAv — <[+tA+(t ) 4.

2!

(AL)?

— At
UV + ATV + o

= 6>\t’U

(since (tA)kv = (A\t)*v)
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e for \ € C, solution is complex (we'll interpret later); for now, assume
A€ER

e if initial state is an eigenvector v, resulting motion is very simple —
always on the line spanned by v

A

e solution z(t) = eMwv is called mode of system & = Ax (associated with

eigenvalue \)

e for A € R, A < 0, mode contracts or shrinks as ¢ |

e for A € R, A > 0, mode expands or grows as ¢ |
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Invariant sets

a set S C R" is invariant under & = Az if whenever x(t) € S, then
x(t) € Sforall T>t

i.e.. once trajectory enters S, it stays in S

trajectory

vector field interpretation: trajectories only cut into .S, never out
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suppose Av = Av, v #0, A € R

e line { tv | t € R } is invariant
(in fact, ray { tv | t > 0 } is invariant)

o if A <O, line segment { tv | 0 <t <a } isinvariant
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Complex eigenvectors

suppose Av = v, v # 0, X is complex

A

for a € C, (complex) trajectory ae*'v satisfies & = Ax

hence so does (real) trajectory
x(t) = RN (ae”v)

coswt sinwt Q
— eat[ Ure Uim } ] [ ]

—sinwt coswt —f3

where
UZUre"‘jUima )‘:U+jw7 CLIO&-l—jﬁ

e trajectory stays in invariant plane span{ve, Vim }
e o gives logarithmic growth/decay factor

e w gives angular velocity of rotation in plane
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Dynamic interpretation: left eigenvectors

suppose wl A = A w!, w #0

then y
—(whz) = w's = wh Az = ANw' z)

dt
i.e., wlx satisfies the DE d(w!x)/dt = \w!x)

hence wlz(t) = eMwTz(0)

e even if trajectory = is complicated, w'!z is simple
o if e.g., A€ R, A <0, halfspace { z | wl'z < a } is invariant (for a > 0)

o for \ =0 + jw € C, (Rw)!z and (Sw)?'z both have form

e?" (a cos(wt) + Bsin(wt))
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Summary

e right eigenvectors are initial conditions from which resulting motion is
simple (i.e., remains on line or in plane)

e left eigenvectors give linear functions of state that are simple, for any
initial condition
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-1 —10 —10 |
example 1: = = 1 0 0 |z
0 1 0

block diagram:

1/s

Y
—_
~—
Va
Y
p—t
~—
Va

X(s) =5+ s*+10s+ 10 = (s + 1)(s* 4+ 10)

eigenvalues are —1, =+ 5v/10
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trajectory with 2(0) = (0, —1,1):
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left eigenvector asssociated with eigenvalue —1 is

let's check g”'z(t) when z(0) = (0, —1,1) (as above):

1
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8
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eigenvector associated with eigenvalue 51/10 is

- —0.554 + j0.771 |
v = 0.244 + 50.175
0.055 — j0.077 |

so an invariant plane is spanned by

[ —0.554 | C 0.771
Vpo = 0.244 |, vy = 0.175
| 0.055 | | —0.077 |
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for example, with 2(0) = v, we have
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Example 2: Markov chain
probability distribution satisfies p(t + 1) = Pp(t)
pi(t) =Prob( z(t) =i ) so > ., pi(t) =

P =Prob( z(t+1)=i|z(t)=7) so> . P;=1
(such matrices are called stochastic)

1

rewrite as:
11---1]P=[11"---1]
i.e., [L 1 --- 1] is a left eigenvector of P with e.v. 1

hence det(I — P) = 0, so there is a right eigenvector v # 0 with Pv = v

It can be shown that v can be chosen so that v; > 0, hence we can
normalize v so that > ", v; =1

interpretation: v is an equilibrium distribution; i.e., if p(0) = v then
p(t)=wvforallt >0

(if v is unique it is called the steady-state distribution of the Markov chain)
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suppose v1,...,U, IS a linearly independent set of eigenvectors of

A e R

EXPress as

A[”Ul

define T = | v

and finally
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Diagonalization

A’Ui:)\i’vi, z:l,...,n

von | =01 o]

vp | and A = diag(A1,...,\,), S0

AT =TA

T YAT = A

11-19



e 7' invertible since vy, ..., v, linearly independent

e similarity transformation by 1" diagonalizes A

conversely if thereisa T = [v1 -+ v,] s.t.
T AT = A = diag(\, ..., \n)
then AT =TA, 1.e.,
Av, =N Nv;, 1=1,...,n

so v1,...,Up IS a linearly independent set of eigenvectors of A

we say A is diagonalizable if

o there exists T's.t. T'AT = A is diagonal

e A has a set of linearly independent eigenvectors

(if A is not diagonalizable, it is sometimes called defective)
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Not all matrices are diagonalizable

example: A = [ 8 (1) ]

characteristic polynomial is X(s) = 52, so A = 0 is only eigenvalue

eigenvectors satisfy Av = 0v =0, 1.e.
0 1 V1 .
o of[n]=0

(O]

0 ] where v; # 0

so all eigenvectors have form v = [

thus, A cannot have two independent eigenvectors

Eigenvectors and diagonalization
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Distinct eigenvalues

fact: if A has distinct eigenvalues, i.e., \; # A\; for ¢ # j, then A is
diagonalizable

(the converse is false — A can have repeated eigenvalues but still be
diagonalizable)
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Diagonalization and left eigenvectors

rewrite T YAT = Aas T 1A= AT"! or

where w

thus

T

1heee,W

T
n

AN
I
=

are the rows of 71

TAr_ .. T
w; A = \w;

i.e., the rows of T—1 are (lin. indep.) left eigenvectors, normalized so that

(i.e., left & right eigenvectors chosen this way are dual bases)
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Modal form

suppose A is diagonalizable by T°

define new coordinates by z = T'x, so

I
=
=N

Ti: = AT: < =T 'AT: & 7
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in new coordinate system, system is diagonal (decoupled):

1/s

trajectories consist of n independent modes, i.e.,
fz(t) — Gkitflvii(())
hence the name modal form
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Real modal form

when eigenvalues (hence T') are complex, system can be put in real modal
form:

15 = aing (3. 7 ][ o))

—Wr4+1  Or41 —Wnp  Onp

where A, = diag(\1,...,\,) are the real eigenvalues, and
Ni=0;,+jw;, t=r+1,...,n

are the complex eigenvalues
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block diagram of ‘complex mode’:

I
|

I
|
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diagonalization simplifies many matrix expressions

e.q., resolvent:
(sI— A" = (sTT'=TAT™Y)
= ( (sl — AT )1
= T(sI —A)'T1

1 1
= Tdi . 71
a8 (s—)\l’ ’S—An)

powers (i.e., discrete-time solution):
AF = (TAT )"
= (TAT ") - (TAT)
= TA'T!
= Tdiag(\¥, ..., \H1T~!

(for k < 0 only if A invertible, i.e., all \; #£ 0)

Eigenvectors and diagonalization
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exponential (i.e., continuous-time solution):

e = T+A+A%/2 4.
— [+ TAT™ '+ (TAT™Y)" /2! + -
= T +A+A*/20 4. )T
= Tt
— Tdiag(e,...,eM)T !

Eigenvectors and diagonalization 11-29



Analytic function of a matrix

for any analytic function f : R — R, 7.e., given by power series

f(a) = Bo + pra + Bea” + B3a® + - -

we can define f(A) for A € R"*" (i.e., overload f) as

substituting A =

f(A)

f(A) = Bol + B1A + Ba A% + B3A% + - -

TAT—1 we have

= Bol + B1A+ G2A% + B3A° + -

= BoTT '+ /i TAT '+ Bo(TAT 12 + - -
= T (Bol + 1A+ BN+ )T

= Tdiag(f(\),.... f(\)T™
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Solution via diagonalization

assume A is diagonalizable
consider LDS & = Az, with T71AT = A
then

(t) = ez(0)
= TeMT12(0)

= Z e (w; z(0))v;

thus: any trajectory can be expressed as linear combination of modes
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interpretation:

e (left eigenvectors) decompose initial state z(0) into modal components
T
w; 2(0)

e ¢’i' term propagates ith mode forward ¢ seconds

e reconstruct state as linear combination of (right) eigenvectors
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application: for what x(0) do we have z(t) — 0 as t — o0?

divide eigenvalues into those with negative real parts

KA1 <O0,..., R\ <O,

and the others,
RAsi1>0,...,0\, >0

from N
r(t) = Y N (wlz(0))v;
i=1
condition for x(t) — 0 is:
z(0) € span{vy,...,vs},

or equivalently,

can you prove this?
(cany
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wlz(0)=0, i=s+1,...,n
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Stability of discrete-time systems

suppose A diagonalizable
consider discrete-time LDS z(t + 1) = Ax(t)
if A=TAT~, then AF = TAFT—1
then .
z(t) = A'z(0) = ) M(w/z(0))v; =0 ast— oo
for all 2(0) if and only if -

‘)\7;|<1, 1=1,...,n.

we will see later that this is true even when A is not diagonalizable, so we
have

fact: x(t + 1) = Ax(t) is stable if and only if all eigenvalues of A have
magnitude less than one
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