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Lecture 11

Eigenvectors and diagonalization

• eigenvectors

• dynamic interpretation: invariant sets

• complex eigenvectors & invariant planes

• left eigenvectors

• diagonalization

• modal form

• discrete-time stability
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Eigenvectors and eigenvalues

λ ∈ C is an eigenvalue of A ∈ Cn×n if

X (λ) = det(λI − A) = 0

equivalent to:

• there exists nonzero v ∈ Cn s.t. (λI − A)v = 0, i.e.,

Av = λv

any such v is called an eigenvector of A (associated with eigenvalue λ)

• there exists nonzero w ∈ Cn s.t. wT (λI − A) = 0, i.e.,

wTA = λwT

any such w is called a left eigenvector of A
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• if v is an eigenvector of A with eigenvalue λ, then so is αv, for any
α ∈ C, α 6= 0

• even when A is real, eigenvalue λ and eigenvector v can be complex

• when A and λ are real, we can always find a real eigenvector v
associated with λ: if Av = λv, with A ∈ Rn×n, λ ∈ R, and v ∈ Cn,
then

Aℜv = λℜv, Aℑv = λℑv

so ℜv and ℑv are real eigenvectors, if they are nonzero
(and at least one is)

• conjugate symmetry : if A is real and v ∈ Cn is an eigenvector
associated with λ ∈ C, then v is an eigenvector associated with λ:

taking conjugate of Av = λv we get Av = λv, so

Av = λv

we’ll assume A is real from now on . . .
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Scaling interpretation

(assume λ ∈ R for now; we’ll consider λ ∈ C later)

if v is an eigenvector, effect of A on v is very simple: scaling by λ

x

v

Ax

Av

(what is λ here?)
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• λ ∈ R, λ > 0: v and Av point in same direction

• λ ∈ R, λ < 0: v and Av point in opposite directions

• λ ∈ R, |λ| < 1: Av smaller than v

• λ ∈ R, |λ| > 1: Av larger than v

(we’ll see later how this relates to stability of continuous- and discrete-time
systems. . . )
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Dynamic interpretation

suppose Av = λv, v 6= 0

if ẋ = Ax and x(0) = v, then x(t) = eλtv

several ways to see this, e.g.,

x(t) = etAv =

(

I + tA +
(tA)2

2!
+ · · ·

)

v

= v + λtv +
(λt)2

2!
v + · · ·

= eλtv

(since (tA)kv = (λt)kv)
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• for λ ∈ C, solution is complex (we’ll interpret later); for now, assume
λ ∈ R

• if initial state is an eigenvector v, resulting motion is very simple —
always on the line spanned by v

• solution x(t) = eλtv is called mode of system ẋ = Ax (associated with
eigenvalue λ)

• for λ ∈ R, λ < 0, mode contracts or shrinks as t ↑

• for λ ∈ R, λ > 0, mode expands or grows as t ↑
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Invariant sets

a set S ⊆ Rn is invariant under ẋ = Ax if whenever x(t) ∈ S, then
x(τ) ∈ S for all τ ≥ t

i.e.: once trajectory enters S, it stays in S

trajectory

S

vector field interpretation: trajectories only cut into S, never out
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suppose Av = λv, v 6= 0, λ ∈ R

• line { tv | t ∈ R } is invariant

(in fact, ray { tv | t > 0 } is invariant)

• if λ < 0, line segment { tv | 0 ≤ t ≤ a } is invariant
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Complex eigenvectors

suppose Av = λv, v 6= 0, λ is complex

for a ∈ C, (complex) trajectory aeλtv satisfies ẋ = Ax

hence so does (real) trajectory

x(t) = ℜ
(

aeλtv
)

= eσt
[

vre vim

]

[

cos ωt sinωt
− sinωt cos ωt

] [

α
−β

]

where
v = vre + jvim, λ = σ + jω, a = α + jβ

• trajectory stays in invariant plane span{vre, vim}
• σ gives logarithmic growth/decay factor

• ω gives angular velocity of rotation in plane
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Dynamic interpretation: left eigenvectors

suppose wTA = λwT , w 6= 0

then
d

dt
(wTx) = wT ẋ = wTAx = λ(wTx)

i.e., wTx satisfies the DE d(wTx)/dt = λ(wTx)

hence wTx(t) = eλtwTx(0)

• even if trajectory x is complicated, wTx is simple

• if, e.g., λ ∈ R, λ < 0, halfspace { z | wTz ≤ a } is invariant (for a ≥ 0)

• for λ = σ + jω ∈ C, (ℜw)Tx and (ℑw)Tx both have form

eσt (α cos(ωt) + β sin(ωt))
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Summary

• right eigenvectors are initial conditions from which resulting motion is
simple (i.e., remains on line or in plane)

• left eigenvectors give linear functions of state that are simple, for any
initial condition
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example 1: ẋ =





−1 −10 −10
1 0 0
0 1 0



 x

block diagram:

x1 x2 x3

1/s1/s1/s

−1 −10 −10

X (s) = s3 + s2 + 10s + 10 = (s + 1)(s2 + 10)

eigenvalues are −1, ± j
√

10
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trajectory with x(0) = (0,−1, 1):
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left eigenvector asssociated with eigenvalue −1 is

g =





0.1
0
1





let’s check gTx(t) when x(0) = (0,−1, 1) (as above):
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eigenvector associated with eigenvalue j
√

10 is

v =





−0.554 + j0.771
0.244 + j0.175
0.055 − j0.077





so an invariant plane is spanned by

vre =





−0.554
0.244
0.055



 , vim =





0.771
0.175

−0.077




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for example, with x(0) = vre we have
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Example 2: Markov chain

probability distribution satisfies p(t + 1) = Pp(t)

pi(t) = Prob( z(t) = i ) so
∑n

i=1
pi(t) = 1

Pij = Prob( z(t + 1) = i | z(t) = j ), so
∑n

i=1
Pij = 1

(such matrices are called stochastic)

rewrite as:
[1 1 · · · 1]P = [1 1 · · · 1]

i.e., [1 1 · · · 1] is a left eigenvector of P with e.v. 1

hence det(I − P ) = 0, so there is a right eigenvector v 6= 0 with Pv = v

it can be shown that v can be chosen so that vi ≥ 0, hence we can
normalize v so that

∑n

i=1
vi = 1

interpretation: v is an equilibrium distribution; i.e., if p(0) = v then
p(t) = v for all t ≥ 0

(if v is unique it is called the steady-state distribution of the Markov chain)
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Diagonalization

suppose v1, . . . , vn is a linearly independent set of eigenvectors of
A ∈ Rn×n:

Avi = λivi, i = 1, . . . , n

express as

A
[

v1 · · · vn

]

=
[

v1 · · · vn

]





λ1
. . .

λn





define T =
[

v1 · · · vn

]

and Λ = diag(λ1, . . . , λn), so

AT = TΛ

and finally
T−1AT = Λ
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• T invertible since v1, . . . , vn linearly independent

• similarity transformation by T diagonalizes A

conversely if there is a T = [v1 · · · vn] s.t.

T−1AT = Λ = diag(λ1, . . . , λn)

then AT = TΛ, i.e.,

Avi = λivi, i = 1, . . . , n

so v1, . . . , vn is a linearly independent set of eigenvectors of A

we say A is diagonalizable if

• there exists T s.t. T−1AT = Λ is diagonal

• A has a set of linearly independent eigenvectors

(if A is not diagonalizable, it is sometimes called defective)
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Not all matrices are diagonalizable

example: A =

[

0 1
0 0

]

characteristic polynomial is X (s) = s2, so λ = 0 is only eigenvalue

eigenvectors satisfy Av = 0v = 0, i.e.

[

0 1
0 0

] [

v1

v2

]

= 0

so all eigenvectors have form v =

[

v1

0

]

where v1 6= 0

thus, A cannot have two independent eigenvectors
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Distinct eigenvalues

fact: if A has distinct eigenvalues, i.e., λi 6= λj for i 6= j, then A is
diagonalizable

(the converse is false — A can have repeated eigenvalues but still be
diagonalizable)
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Diagonalization and left eigenvectors

rewrite T−1AT = Λ as T−1A = ΛT−1, or





wT
1
...

wT
n



A = Λ





wT
1
...

wT
n





where wT
1 , . . . , wT

n are the rows of T−1

thus
wT

i A = λiw
T
i

i.e., the rows of T−1 are (lin. indep.) left eigenvectors, normalized so that

wT
i vj = δij

(i.e., left & right eigenvectors chosen this way are dual bases)
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Modal form

suppose A is diagonalizable by T

define new coordinates by x = T x̃, so

T ˙̃x = ATx̃ ⇔ ˙̃x = T−1ATx̃ ⇔ ˙̃x = Λx̃
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in new coordinate system, system is diagonal (decoupled):

1/s

1/s

x̃1

x̃n

λ1

λn

trajectories consist of n independent modes, i.e.,

x̃i(t) = eλitx̃i(0)

hence the name modal form
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Real modal form

when eigenvalues (hence T ) are complex, system can be put in real modal

form:

S−1AS = diag

(

Λr,

[

σr+1 ωr+1

−ωr+1 σr+1

]

, . . . ,

[

σn ωn

−ωn σn

])

where Λr = diag(λ1, . . . , λr) are the real eigenvalues, and

λi = σi + jωi, i = r + 1, . . . , n

are the complex eigenvalues
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block diagram of ‘complex mode’:

σ

σ

−ω

ω

1/s

1/s
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diagonalization simplifies many matrix expressions

e.g., resolvent:

(sI − A)−1 =
(

sTT−1 − TΛT−1
)

−1

=
(

T (sI − Λ)T−1
)

−1

= T (sI − Λ)−1T−1

= T diag

(

1

s − λ1

, . . . ,
1

s − λn

)

T−1

powers (i.e., discrete-time solution):

Ak =
(

TΛT−1
)k

=
(

TΛT−1
)

· · ·
(

TΛT−1
)

= TΛkT−1

= T diag(λk
1, . . . , λ

k
n)T−1

(for k < 0 only if A invertible, i.e., all λi 6= 0)
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exponential (i.e., continuous-time solution):

eA = I + A + A2/2! + · · ·
= I + TΛT−1 +

(

TΛT−1
)2

/2! + · · ·
= T (I + Λ + Λ2/2! + · · ·)T−1

= TeΛT−1

= T diag(eλ1, . . . , eλn)T−1
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Analytic function of a matrix

for any analytic function f : R → R, i.e., given by power series

f(a) = β0 + β1a + β2a
2 + β3a

3 + · · ·

we can define f(A) for A ∈ Rn×n (i.e., overload f) as

f(A) = β0I + β1A + β2A
2 + β3A

3 + · · ·

substituting A = TΛT−1, we have

f(A) = β0I + β1A + β2A
2 + β3A

3 + · · ·
= β0TT−1 + β1TΛT−1 + β2(TΛT−1)2 + · · ·
= T

(

β0I + β1Λ + β2Λ
2 + · · ·

)

T−1

= T diag(f(λ1), . . . , f(λn))T−1
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Solution via diagonalization

assume A is diagonalizable

consider LDS ẋ = Ax, with T−1AT = Λ

then

x(t) = etAx(0)

= TeΛtT−1x(0)

=
n

∑

i=1

eλit(wT
i x(0))vi

thus: any trajectory can be expressed as linear combination of modes
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interpretation:

• (left eigenvectors) decompose initial state x(0) into modal components
wT

i x(0)

• eλit term propagates ith mode forward t seconds

• reconstruct state as linear combination of (right) eigenvectors
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application: for what x(0) do we have x(t) → 0 as t → ∞?

divide eigenvalues into those with negative real parts

ℜλ1 < 0, . . . ,ℜλs < 0,

and the others,
ℜλs+1 ≥ 0, . . . ,ℜλn ≥ 0

from

x(t) =
n

∑

i=1

eλit(wT
i x(0))vi

condition for x(t) → 0 is:

x(0) ∈ span{v1, . . . , vs},

or equivalently,
wT

i x(0) = 0, i = s + 1, . . . , n

(can you prove this?)
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Stability of discrete-time systems

suppose A diagonalizable

consider discrete-time LDS x(t + 1) = Ax(t)

if A = TΛT−1, then Ak = TΛkT−1

then

x(t) = Atx(0) =

n
∑

i=1

λt
i(w

T
i x(0))vi → 0 as t → ∞

for all x(0) if and only if

|λi| < 1, i = 1, . . . , n.

we will see later that this is true even when A is not diagonalizable, so we
have

fact: x(t + 1) = Ax(t) is stable if and only if all eigenvalues of A have
magnitude less than one
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