Lecture 11 Eigenvectors and diagonalization

- eigenvectors
- dynamic interpretation: invariant sets
- complex eigenvectors & invariant planes
- left eigenvectors
- diagonalization
- modal form
- discrete-time stability

Eigenvectors and eigenvalues

 $\lambda \in \mathbf{C}$ is an *eigenvalue* of $A \in \mathbf{C}^{n \times n}$ if

$$\mathcal{X}(\lambda) = \det(\lambda I - A) = 0$$

equivalent to:

• there exists nonzero $v \in \mathbf{C}^n$ s.t. $(\lambda I - A)v = 0$, *i.e.*,

 $Av = \lambda v$

any such v is called an *eigenvector* of A (associated with eigenvalue λ)

• there exists nonzero $w \in \mathbf{C}^n$ s.t. $w^T(\lambda I - A) = 0$, *i.e.*,

$$w^T A = \lambda w^T$$

any such w is called a *left eigenvector* of A

Eigenvectors and diagonalization

- if v is an eigenvector of A with eigenvalue λ , then so is αv , for any $\alpha \in \mathbf{C}$, $\alpha \neq 0$
- even when A is real, eigenvalue λ and eigenvector v can be complex
- when A and λ are real, we can always find a real eigenvector v associated with λ : if $Av = \lambda v$, with $A \in \mathbf{R}^{n \times n}$, $\lambda \in \mathbf{R}$, and $v \in \mathbf{C}^n$, then

$$A\Re v = \lambda \Re v, \qquad A\Im v = \lambda \Im v$$

so $\Re v$ and $\Im v$ are real eigenvectors, if they are nonzero (and at least one is)

conjugate symmetry: if A is real and v ∈ Cⁿ is an eigenvector associated with λ ∈ C, then v̄ is an eigenvector associated with λ̄: taking conjugate of Av = λv we get Av = λv̄, so

$$A\overline{v} = \overline{\lambda}\overline{v}$$

we'll assume A is real from now on . . .

Scaling interpretation

(assume $\lambda \in \mathbf{R}$ for now; we'll consider $\lambda \in \mathbf{C}$ later)

if v is an eigenvector, effect of A on v is very simple: scaling by λ

(what is λ here?)

- $\lambda \in \mathbf{R}$, $\lambda > 0$: v and Av point in same direction
- $\lambda \in \mathbf{R}$, $\lambda < 0$: v and Av point in opposite directions
- $\lambda \in \mathbf{R}$, $|\lambda| < 1$: Av smaller than v
- $\lambda \in \mathbf{R}$, $|\lambda| > 1$: Av larger than v

(we'll see later how this relates to stability of continuous- and discrete-time systems. . .)

Dynamic interpretation

suppose $Av = \lambda v$, $v \neq 0$

if $\dot{x} = Ax$ and x(0) = v, then $x(t) = e^{\lambda t}v$

several ways to see this, e.g.,

$$\begin{aligned} x(t) &= e^{tA}v \quad = \quad \left(I + tA + \frac{(tA)^2}{2!} + \cdots\right)v \\ &= \quad v + \lambda tv + \frac{(\lambda t)^2}{2!}v + \cdots \\ &= \quad e^{\lambda t}v \end{aligned}$$

(since $(tA)^k v = (\lambda t)^k v$)

- for $\lambda \in \mathbf{C}$, solution is complex (we'll interpret later); for now, assume $\lambda \in \mathbf{R}$
- if initial state is an eigenvector v, resulting motion is very simple always on the line spanned by v
- solution $x(t) = e^{\lambda t}v$ is called *mode* of system $\dot{x} = Ax$ (associated with eigenvalue λ)

- for $\lambda \in \mathbf{R}$, $\lambda < 0$, mode contracts or shrinks as $t \uparrow$
- for $\lambda \in \mathbf{R}$, $\lambda > 0$, mode expands or grows as $t \uparrow$

Invariant sets

a set $S \subseteq \mathbf{R}^n$ is *invariant* under $\dot{x} = Ax$ if whenever $x(t) \in S$, then $x(\tau) \in S$ for all $\tau \ge t$

i.e.: once trajectory enters S, it stays in S

vector field interpretation: trajectories only cut into S, never out

suppose $Av = \lambda v$, $v \neq 0$, $\lambda \in \mathbf{R}$

- line { tv | t ∈ R } is invariant
 (in fact, ray { tv | t > 0 } is invariant)
- if $\lambda < 0$, line segment { $tv \mid 0 \le t \le a$ } is invariant

Complex eigenvectors

suppose $Av = \lambda v$, $v \neq 0$, λ is complex

for $a \in \mathbf{C}$, (complex) trajectory $ae^{\lambda t}v$ satisfies $\dot{x} = Ax$ hence so does (real) trajectory

$$\begin{aligned} x(t) &= \Re \left(a e^{\lambda t} v \right) \\ &= e^{\sigma t} \left[v_{\rm re} \quad v_{\rm im} \right] \left[\begin{array}{c} \cos \omega t & \sin \omega t \\ -\sin \omega t & \cos \omega t \end{array} \right] \left[\begin{array}{c} \alpha \\ -\beta \end{array} \right] \end{aligned}$$

where

$$v = v_{\rm re} + jv_{\rm im}, \quad \lambda = \sigma + j\omega, \quad a = \alpha + j\beta$$

- trajectory stays in *invariant plane* span $\{v_{\rm re}, v_{\rm im}\}$
- σ gives logarithmic growth/decay factor
- $\bullet \ \omega$ gives angular velocity of rotation in plane

Dynamic interpretation: left eigenvectors

suppose
$$w^T A = \lambda w^T$$
, $w \neq 0$

then

$$\frac{d}{dt}(w^T x) = w^T \dot{x} = w^T A x = \lambda(w^T x)$$

 $i.e.,~w^Tx$ satisfies the DE $d(w^Tx)/dt = \lambda(w^Tx)$

hence $w^T x(t) = e^{\lambda t} w^T x(0)$

- even if trajectory x is complicated, $w^T x$ is simple
- if, e.g., $\lambda \in \mathbf{R}$, $\lambda < 0$, halfspace { $z \mid w^T z \leq a$ } is invariant (for $a \geq 0$)
- for $\lambda = \sigma + j\omega \in \mathbf{C}$, $(\Re w)^T x$ and $(\Im w)^T x$ both have form

 $e^{\sigma t} \left(\alpha \cos(\omega t) + \beta \sin(\omega t) \right)$

Summary

- *right eigenvectors* are initial conditions from which resulting motion is simple (*i.e.*, remains on line or in plane)
- *left eigenvectors* give linear functions of state that are simple, for any initial condition

example 1:
$$\dot{x} = \begin{bmatrix} -1 & -10 & -10 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} x$$

block diagram:

$$\mathcal{X}(s) = s^3 + s^2 + 10s + 10 = (s+1)(s^2 + 10)$$

eigenvalues are $-1, \pm j\sqrt{10}$

Eigenvectors and diagonalization

trajectory with x(0) = (0, -1, 1):

left eigenvector associated with eigenvalue -1 is

$$g = \begin{bmatrix} 0.1 \\ 0 \\ 1 \end{bmatrix}$$

let's check $g^T x(t)$ when x(0) = (0, -1, 1) (as above):

eigenvector associated with eigenvalue $j\sqrt{10}$ is

$$v = \begin{bmatrix} -0.554 + j0.771 \\ 0.244 + j0.175 \\ 0.055 - j0.077 \end{bmatrix}$$

so an invariant plane is spanned by

$$v_{\rm re} = \begin{bmatrix} -0.554\\ 0.244\\ 0.055 \end{bmatrix}, \quad v_{\rm im} = \begin{bmatrix} 0.771\\ 0.175\\ -0.077 \end{bmatrix}$$

for example, with $x(0) = v_{\rm re}$ we have

Example 2: Markov chain

probability distribution satisfies p(t+1) = Pp(t) $p_i(t) = \mathbf{Prob}(z(t) = i)$ so $\sum_{i=1}^n p_i(t) = 1$ $P_{ij} = \mathbf{Prob}(z(t+1) = i \mid z(t) = j)$, so $\sum_{i=1}^n P_{ij} = 1$ (such matrices are called *stochastic*)

rewrite as:

$$1 \ 1 \ \cdots \ 1]P = [1 \ 1 \ \cdots \ 1]$$

 $\textit{i.e.,}~[1~1~\cdots~1]$ is a left eigenvector of P with e.v. 1

hence det(I - P) = 0, so there is a right eigenvector $v \neq 0$ with Pv = v

it can be shown that v can be chosen so that $v_i \ge 0$, hence we can normalize v so that $\sum_{i=1}^{n} v_i = 1$

interpretation: v is an *equilibrium distribution*; *i.e.*, if p(0) = v then p(t) = v for all $t \ge 0$

(if v is unique it is called the *steady-state distribution* of the Markov chain)

Diagonalization

suppose v_1, \ldots, v_n is a *linearly independent* set of eigenvectors of $A \in \mathbf{R}^{n \times n}$:

$$Av_i = \lambda_i v_i, \quad i = 1, \dots, n$$

express as

$$A \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

define
$$T = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}$$
 and $\Lambda = \mathbf{diag}(\lambda_1, \dots, \lambda_n)$, so
 $AT = T\Lambda$

and finally

$$T^{-1}AT = \Lambda$$

- T invertible since v_1, \ldots, v_n linearly independent
- similarity transformation by $T\ \mbox{diagonalizes}\ A$

conversely if there is a $T = [v_1 \cdots v_n]$ s.t.

 $T^{-1}AT = \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$

then $AT = T\Lambda$, *i.e.*,

$$Av_i = \lambda_i v_i, \quad i = 1, \dots, n$$

so v_1, \ldots, v_n is a linearly independent set of eigenvectors of Awe say A is *diagonalizable* if

- there exists T s.t. $T^{-1}AT = \Lambda$ is diagonal
- A has a set of linearly independent eigenvectors

(if A is not diagonalizable, it is sometimes called *defective*)

Not all matrices are diagonalizable

example:
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

characteristic polynomial is $\mathcal{X}(s)=s^2$, so $\lambda=0$ is only eigenvalue

eigenvectors satisfy Av = 0v = 0, *i.e.*

$$\left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right] \left[\begin{array}{c} v_1 \\ v_2 \end{array}\right] = 0$$

so all eigenvectors have form $v = \begin{bmatrix} v_1 \\ 0 \end{bmatrix}$ where $v_1 \neq 0$

thus, A cannot have two independent eigenvectors

Distinct eigenvalues

fact: if A has distinct eigenvalues, *i.e.*, $\lambda_i \neq \lambda_j$ for $i \neq j$, then A is diagonalizable

(the converse is false — A can have repeated eigenvalues but still be diagonalizable)

Diagonalization and left eigenvectors

rewrite $T^{-1}AT=\Lambda$ as $T^{-1}A=\Lambda T^{-1}$, or

$$\left[\begin{array}{c} w_1^T \\ \vdots \\ w_n^T \end{array}\right] A = \Lambda \left[\begin{array}{c} w_1^T \\ \vdots \\ w_n^T \end{array}\right]$$

where w_1^T, \ldots, w_n^T are the rows of T^{-1}

thus

$$w_i^T A = \lambda_i w_i^T$$

i.e., the rows of T^{-1} are (lin. indep.) left eigenvectors, normalized so that

$$w_i^T v_j = \delta_{ij}$$

(*i.e.*, left & right eigenvectors chosen this way are *dual bases*)

Modal form

suppose \boldsymbol{A} is diagonalizable by \boldsymbol{T}

define new coordinates by $x = T\tilde{x}$, so

$$T\dot{\tilde{x}} = AT\tilde{x} \quad \Leftrightarrow \quad \dot{\tilde{x}} = T^{-1}AT\tilde{x} \quad \Leftrightarrow \quad \dot{\tilde{x}} = \Lambda\tilde{x}$$

in new coordinate system, system is diagonal (decoupled):

trajectories consist of n independent modes, *i.e.*,

$$\tilde{x}_i(t) = e^{\lambda_i t} \tilde{x}_i(0)$$

hence the name modal form

Eigenvectors and diagonalization

Real modal form

when eigenvalues (hence T) are complex, system can be put in *real modal* form:

$$S^{-1}AS = \operatorname{diag}\left(\Lambda_r, \left[\begin{array}{cc}\sigma_{r+1} & \omega_{r+1}\\-\omega_{r+1} & \sigma_{r+1}\end{array}\right], \dots, \left[\begin{array}{cc}\sigma_n & \omega_n\\-\omega_n & \sigma_n\end{array}\right]\right)$$

where $\Lambda_r = \mathbf{diag}(\lambda_1, \dots, \lambda_r)$ are the real eigenvalues, and

$$\lambda_i = \sigma_i + j\omega_i, \quad i = r+1, \dots, n$$

are the complex eigenvalues

block diagram of 'complex mode':

diagonalization simplifies many matrix expressions

e.g., resolvent:

$$(sI - A)^{-1} = (sTT^{-1} - T\Lambda T^{-1})^{-1}$$

= $(T(sI - \Lambda)T^{-1})^{-1}$
= $T(sI - \Lambda)^{-1}T^{-1}$
= $T \operatorname{diag}\left(\frac{1}{s - \lambda_1}, \dots, \frac{1}{s - \lambda_n}\right)T^{-1}$

powers (*i.e.*, discrete-time solution):

$$A^{k} = (T\Lambda T^{-1})^{k}$$

= $(T\Lambda T^{-1}) \cdots (T\Lambda T^{-1})$
= $T\Lambda^{k}T^{-1}$
= $T\operatorname{diag}(\lambda_{1}^{k}, \dots, \lambda_{n}^{k})T^{-1}$

(for k < 0 only if A invertible, *i.e.*, all $\lambda_i \neq 0$)

exponential (*i.e.*, continuous-time solution):

$$e^{A} = I + A + A^{2}/2! + \cdots$$

$$= I + T\Lambda T^{-1} + (T\Lambda T^{-1})^{2}/2! + \cdots$$

$$= T(I + \Lambda + \Lambda^{2}/2! + \cdots)T^{-1}$$

$$= Te^{\Lambda}T^{-1}$$

$$= T\operatorname{diag}(e^{\lambda_{1}}, \dots, e^{\lambda_{n}})T^{-1}$$

Analytic function of a matrix

for any analytic function $f : \mathbf{R} \to \mathbf{R}$, *i.e.*, given by power series

$$f(a) = \beta_0 + \beta_1 a + \beta_2 a^2 + \beta_3 a^3 + \cdots$$

we can define f(A) for $A \in \mathbf{R}^{n \times n}$ (*i.e.*, overload f) as

$$f(A) = \beta_0 I + \beta_1 A + \beta_2 A^2 + \beta_3 A^3 + \cdots$$

substituting $A = T\Lambda T^{-1}$, we have

$$f(A) = \beta_0 I + \beta_1 A + \beta_2 A^2 + \beta_3 A^3 + \cdots$$

= $\beta_0 T T^{-1} + \beta_1 T \Lambda T^{-1} + \beta_2 (T \Lambda T^{-1})^2 + \cdots$
= $T \left(\beta_0 I + \beta_1 \Lambda + \beta_2 \Lambda^2 + \cdots\right) T^{-1}$
= $T \operatorname{diag}(f(\lambda_1), \dots, f(\lambda_n)) T^{-1}$

Solution via diagonalization

assume A is diagonalizable

consider LDS $\dot{x} = Ax$, with $T^{-1}AT = \Lambda$

then

$$\begin{aligned} x(t) &= e^{tA}x(0) \\ &= Te^{\Lambda t}T^{-1}x(0) \\ &= \sum_{i=1}^{n} e^{\lambda_i t}(w_i^T x(0))v_i \end{aligned}$$

thus: any trajectory can be expressed as linear combination of modes

interpretation:

- (left eigenvectors) decompose initial state x(0) into modal components $w_i^T x(0)$
- $e^{\lambda_i t}$ term propagates *i*th mode forward *t* seconds
- reconstruct state as linear combination of (right) eigenvectors

application: for what x(0) do we have $x(t) \to 0$ as $t \to \infty$?

divide eigenvalues into those with negative real parts

 $\Re \lambda_1 < 0, \ldots, \Re \lambda_s < 0,$

and the others,

$$\Re \lambda_{s+1} \ge 0, \dots, \Re \lambda_n \ge 0$$

from

$$x(t) = \sum_{i=1}^{n} e^{\lambda_i t} (w_i^T x(0)) v_i$$

condition for $x(t) \rightarrow 0$ is:

 $x(0) \in \operatorname{span}\{v_1, \ldots, v_s\},\$

or equivalently,

$$w_i^T x(0) = 0, \quad i = s + 1, \dots, n$$

(can you prove this?)

Stability of discrete-time systems

suppose A diagonalizable

consider discrete-time LDS x(t+1) = Ax(t)

if
$$A = T\Lambda T^{-1}$$
, then $A^k = T\Lambda^k T^{-1}$

then

$$x(t) = A^t x(0) = \sum_{i=1}^n \lambda_i^t (w_i^T x(0)) v_i \to 0 \quad \text{as } t \to \infty$$

for all x(0) if and only if

$$|\lambda_i| < 1, \quad i = 1, \dots, n.$$

we will see later that this is true even when A is not diagonalizable, so we have

fact: x(t+1) = Ax(t) is stable if and only if all eigenvalues of A have magnitude less than one