Lecture 11
Eigenvectors and diagonalization

• eigenvectors

• dynamic interpretation: invariant sets

• complex eigenvectors & invariant planes

• left eigenvectors

• diagonalization

• modal form

• discrete-time stability
Eigenvectors and eigenvalues

$\lambda \in \mathbb{C}$ is an eigenvalue of $A \in \mathbb{C}^{n \times n}$ if

$$\chi(\lambda) = \det(\lambda I - A) = 0$$

equivalent to:

- there exists nonzero $v \in \mathbb{C}^n$ s.t. $(\lambda I - A)v = 0$, i.e.,

 $$Av = \lambda v$$

 any such v is called an eigenvector of A (associated with eigenvalue λ)

- there exists nonzero $w \in \mathbb{C}^n$ s.t. $w^T(\lambda I - A) = 0$, i.e.,

 $$w^T A = \lambda w^T$$

 any such w is called a left eigenvector of A
• if \(v \) is an eigenvector of \(A \) with eigenvalue \(\lambda \), then so is \(\alpha v \), for any \(\alpha \in \mathbb{C}, \alpha \neq 0 \)

• even when \(A \) is real, eigenvalue \(\lambda \) and eigenvector \(v \) can be complex

• when \(A \) and \(\lambda \) are real, we can always find a real eigenvector \(v \) associated with \(\lambda \): if \(Av = \lambda v \), with \(A \in \mathbb{R}^{n \times n} \), \(\lambda \in \mathbb{R} \), and \(v \in \mathbb{C}^n \), then
 \[
 A \Re v = \lambda \Re v, \quad A \Im v = \lambda \Im v
 \]
 so \(\Re v \) and \(\Im v \) are real eigenvectors, if they are nonzero (and at least one is)

• **conjugate symmetry**: if \(A \) is real and \(v \in \mathbb{C}^n \) is an eigenvector associated with \(\lambda \in \mathbb{C} \), then \(\overline{v} \) is an eigenvector associated with \(\overline{\lambda} \):
 taking conjugate of \(Av = \lambda v \) we get \(\overline{A} \overline{v} = \overline{\lambda} \overline{v} \), so
 \[
 A \overline{v} = \overline{\lambda} \overline{v}
 \]

we’ll assume \(A \) is real from now on . . .
Scaling interpretation

(assume $\lambda \in \mathbb{R}$ for now; we’ll consider $\lambda \in \mathbb{C}$ later)

if v is an eigenvector, effect of A on v is very simple: scaling by λ

(what is λ here?)
• $\lambda \in \mathbb{R}, \lambda > 0$: v and Av point in same direction

• $\lambda \in \mathbb{R}, \lambda < 0$: v and Av point in opposite directions

• $\lambda \in \mathbb{R}, |\lambda| < 1$: Av smaller than v

• $\lambda \in \mathbb{R}, |\lambda| > 1$: Av larger than v

(we’ll see later how this relates to stability of continuous- and discrete-time systems. . .)
Dynamic interpretation

suppose $Av = \lambda v, v \neq 0$

if $\dot{x} = Ax$ and $x(0) = v$, then $x(t) = e^{\lambda t}v$

several ways to see this, e.g.,

$$x(t) = e^{tA}v = \left(I + tA + \frac{(tA)^2}{2!} + \cdots \right) v$$

$$= \quad v + \lambda tv + \frac{\lambda^2 t^2}{2!} v + \cdots$$

$$= \quad e^{\lambda t}v$$

(since $(tA)^k v = (\lambda t)^k v$)
• for $\lambda \in \mathbb{C}$, solution is complex (we'll interpret later); for now, assume $\lambda \in \mathbb{R}$

• if initial state is an eigenvector v, resulting motion is very simple — always on the line spanned by v

• solution $x(t) = e^{\lambda t}v$ is called *mode* of system $\dot{x} = Ax$ (associated with eigenvalue λ)

• for $\lambda \in \mathbb{R}$, $\lambda < 0$, mode contracts or shrinks as $t \uparrow$

• for $\lambda \in \mathbb{R}$, $\lambda > 0$, mode expands or grows as $t \uparrow$
Invariant sets

A set $S \subseteq \mathbb{R}^n$ is invariant under $\dot{x} = Ax$ if whenever $x(t) \in S$, then $x(\tau) \in S$ for all $\tau \geq t$

i.e.: once trajectory enters S, it stays in S

vector field interpretation: trajectories only cut into S, never out
suppose $Av = \lambda v$, $v \neq 0$, $\lambda \in \mathbb{R}$

- line $\{ tv \mid t \in \mathbb{R} \}$ is invariant

 (in fact, ray $\{ tv \mid t > 0 \}$ is invariant)

- if $\lambda < 0$, line segment $\{ tv \mid 0 \leq t \leq a \}$ is invariant
Complex eigenvectors

suppose \(Av = \lambda v, \ v \neq 0, \ \lambda \) is complex

for \(a \in \mathbb{C}, \) (complex) trajectory \(a e^{\lambda t}v \) satisfies \(\dot{x} = Ax \)

hence so does (real) trajectory

\[
x(t) = \Re (a e^{\lambda t}v) = e^{\sigma t} \begin{bmatrix} v_{re} & v_{im} \end{bmatrix} \begin{bmatrix} \cos \omega t & \sin \omega t \\ -\sin \omega t & \cos \omega t \end{bmatrix} \begin{bmatrix} \alpha \\ -\beta \end{bmatrix}
\]

where

\[
v = v_{re} + jv_{im}, \quad \lambda = \sigma + j\omega, \quad a = \alpha + j\beta
\]

• trajectory stays in invariant plane \(\text{span}\{v_{re}, v_{im}\} \)

• \(\sigma \) gives logarithmic growth/decay factor

• \(\omega \) gives angular velocity of rotation in plane
Dynamic interpretation: left eigenvectors

suppose $w^T A = \lambda w^T$, $w \neq 0$

then

$$\frac{d}{dt}(w^T x) = w^T \dot{x} = w^T Ax = \lambda (w^T x)$$

i.e., $w^T x$ satisfies the DE $d(w^T x)/dt = \lambda (w^T x)$

hence $w^T x(t) = e^{\lambda t} w^T x(0)$

• even if trajectory x is complicated, $w^T x$ is simple
• if, e.g., $\lambda \in \mathbb{R}$, $\lambda < 0$, halfspace $\{ z \mid w^T z \leq a \}$ is invariant (for $a \geq 0$)
• for $\lambda = \sigma + j\omega \in \mathbb{C}$, $(\Re w)^T x$ and $(\Im w)^T x$ both have form

$$e^{\sigma t} (\alpha \cos(\omega t) + \beta \sin(\omega t))$$
Summary

• *right eigenvectors* are initial conditions from which resulting motion is simple (*i.e.*, remains on line or in plane)

• *left eigenvectors* give linear functions of state that are simple, for any initial condition
Example 1: \[
\dot{x} = \begin{bmatrix}
-1 & -10 & -10 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix} x
\]

Block diagram:

\[\mathcal{X}(s) = s^3 + s^2 + 10s + 10 = (s + 1)(s^2 + 10) \]

Eigenvalues are \(-1, \pm j\sqrt{10}\)
trajectory with $x(0) = (0, -1, 1)$:
left eigenvector associated with eigenvalue -1 is

$$g = \begin{bmatrix} 0.1 \\ 0 \\ 1 \end{bmatrix}$$

let's check $g^T x(t)$ when $x(0) = (0, -1, 1)$ (as above):
eigenvector associated with eigenvalue $j\sqrt{10}$ is

$$v = \begin{bmatrix} -0.554 + j0.771 \\ 0.244 + j0.175 \\ 0.055 - j0.077 \end{bmatrix}$$

so an invariant plane is spanned by

$$v_{re} = \begin{bmatrix} -0.554 \\ 0.244 \\ 0.055 \end{bmatrix}, \quad v_{im} = \begin{bmatrix} 0.771 \\ 0.175 \\ -0.077 \end{bmatrix}$$
for example, with $x(0) = v_{re}$ we have

\begin{align*}
\begin{array}{cccc}
\v1 & \v2 & \v3 \\
\hline
-1 & 0 & 0.1 \\
0.5 & -0.5 & 0.1 \\
0 & 0 & 0.1 \\
\end{array}
\end{align*}
Example 2: Markov chain

probability distribution satisfies \(p(t + 1) = Pp(t) \)

\[p_i(t) = \text{Prob}(z(t) = i) \] so \(\sum_{i=1}^{n} p_i(t) = 1 \)

\[P_{ij} = \text{Prob}(z(t + 1) = i \mid z(t) = j), \] so \(\sum_{i=1}^{n} P_{ij} = 1 \)
(such matrices are called stochastic)

rewrite as:

\[[1 \ 1 \ \cdots \ 1]P = [1 \ 1 \ \cdots \ 1] \]

i.e., \([1 \ 1 \ \cdots \ 1] \) is a left eigenvector of \(P \) with e.v. 1

hence \(\det(I - P) = 0 \), so there is a right eigenvector \(v \neq 0 \) with \(P v = v \)

it can be shown that \(v \) can be chosen so that \(v_i \geq 0 \), hence we can normalize \(v \) so that \(\sum_{i=1}^{n} v_i = 1 \)

interpretation: \(v \) is an *equilibrium distribution*; i.e., if \(p(0) = v \) then \(p(t) = v \) for all \(t \geq 0 \)

(if \(v \) is unique it is called the *steady-state distribution* of the Markov chain)
Diagonalization

suppose \(v_1, \ldots, v_n \) is a *linearly independent* set of eigenvectors of \(A \in \mathbb{R}^{n \times n} \):

\[
Av_i = \lambda_i v_i, \quad i = 1, \ldots, n
\]

express as

\[
A \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots \\ \vdots \\ \lambda_n \end{bmatrix}
\]

define \(T = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} \) and \(\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n) \), so

\[
AT = T\Lambda
\]

and finally

\[
T^{-1}AT = \Lambda
\]
• T invertible since v_1, \ldots, v_n linearly independent
• similarity transformation by T diagonalizes A

conversely if there is a $T = [v_1 \cdots v_n]$ s.t.

$$T^{-1}AT = \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$$

then $AT = T\Lambda$, i.e.,

$$Av_i = \lambda_i v_i, \quad i = 1, \ldots, n$$

so v_1, \ldots, v_n is a linearly independent set of eigenvectors of A

we say A is diagonalizable if

• there exists T s.t. $T^{-1}AT = \Lambda$ is diagonal
• A has a set of linearly independent eigenvectors

(if A is not diagonalizable, it is sometimes called defective)
Not all matrices are diagonalizable

example: $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$

characteristic polynomial is $\chi(s) = s^2$, so $\lambda = 0$ is only eigenvalue

eigenvectors satisfy $Av = 0v = 0$, i.e.

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0$$

so all eigenvectors have form $v = \begin{bmatrix} v_1 \\ 0 \end{bmatrix}$ where $v_1 \neq 0$

thus, A cannot have two independent eigenvectors
Distinct eigenvalues

fact: if A has distinct eigenvalues, *i.e.*, $\lambda_i \neq \lambda_j$ for $i \neq j$, then A is diagonalizable

(the converse is false — A can have repeated eigenvalues but still be diagonalizable)
Diagonalization and left eigenvectors

rewrite $T^{-1}AT = \Lambda$ as $T^{-1}A = \Lambda T^{-1}$, or

$$
\begin{bmatrix}
w_1^T \\
\vdots \\
w_n^T
\end{bmatrix} A = \Lambda
\begin{bmatrix}
w_1^T \\
\vdots \\
w_n^T
\end{bmatrix}
$$

where w_1^T, \ldots, w_n^T are the rows of T^{-1}

thus

$$w_i^T A = \lambda_i w_i^T$$

i.e., the rows of T^{-1} are (lin. indep.) left eigenvectors, normalized so that

$$w_i^T v_j = \delta_{ij}$$

(i.e., left & right eigenvectors chosen this way are dual bases)
Modal form

suppose \(A \) is diagonalizable by \(T \)

define new coordinates by \(x = T\tilde{x} \), so

\[
T\dot{x} = AT\tilde{x} \iff \dot{x} = T^{-1}AT\tilde{x} \iff \dot{\tilde{x}} = \Lambda\tilde{x}
\]
in new coordinate system, system is diagonal (decoupled):

\[\tilde{x}_1 \]
\[\frac{1}{s} \]
\[\lambda_1 \]

\[\vdots \]

\[\vdots \]

\[\tilde{x}_n \]
\[\frac{1}{s} \]
\[\lambda_n \]

trajectories consist of \(n \) independent modes, \(i.e. \)

\[\tilde{x}_i(t) = e^{\lambda_i t} \tilde{x}_i(0) \]

hence the name \textit{modal form}
Real modal form

when eigenvalues (hence T) are complex, system can be put in real modal form:

$$S^{-1}AS = \text{diag}\left(\Lambda_r, \begin{bmatrix} \sigma_{r+1} & \omega_{r+1} \\ -\omega_{r+1} & \sigma_{r+1} \end{bmatrix}, \ldots, \begin{bmatrix} \sigma_n & \omega_n \\ -\omega_n & \sigma_n \end{bmatrix}\right)$$

where $\Lambda_r = \text{diag}(\lambda_1, \ldots, \lambda_r)$ are the real eigenvalues, and

$$\lambda_i = \sigma_i + j\omega_i, \quad i = r + 1, \ldots, n$$

are the complex eigenvalues
block diagram of ‘complex mode’:

\[
\begin{array}{c}
\sigma \\
\downarrow \\
1/s \\
\downarrow \\
\omega \\
\downarrow \\
1/s \\
\downarrow \\
\sigma
\end{array}
\]
diagonalization simplifies many matrix expressions

e.g., resolvent:
\[(sI - A)^{-1} = (sTT^{-1} - T\Lambda T^{-1})^{-1}\]
\[= (T(sI - \Lambda)T^{-1})^{-1}\]
\[= T(sI - \Lambda)^{-1}T^{-1}\]
\[= T \text{diag}\left(\frac{1}{s - \lambda_1}, \ldots, \frac{1}{s - \lambda_n}\right) T^{-1}\]

powers (i.e., discrete-time solution):
\[A^k = (T\Lambda T^{-1})^k\]
\[= (T\Lambda T^{-1}) \cdots (T\Lambda T^{-1})\]
\[= T\Lambda^k T^{-1}\]
\[= T \text{diag}(\lambda_1^k, \ldots, \lambda_n^k) T^{-1}\]

(for \(k < 0\) only if \(A\) invertible, i.e., all \(\lambda_i \neq 0\))
exponential (i.e., continuous-time solution):

\[
e^A = I + A + A^2/2! + \cdots \\
= I + T\Lambda T^{-1} + (T\Lambda T^{-1})^2/2! + \cdots \\
= T(I + \Lambda + \Lambda^2/2! + \cdots)T^{-1} \\
= Te^{\Lambda}T^{-1} \\
= T \text{ diag}(e^{\lambda_1}, \ldots, e^{\lambda_n})T^{-1}
\]
Analytic function of a matrix

for any analytic function $f : \mathbb{R} \to \mathbb{R}$, i.e., given by power series

$$f(a) = \beta_0 + \beta_1 a + \beta_2 a^2 + \beta_3 a^3 + \cdots$$

we can define $f(A)$ for $A \in \mathbb{R}^{n \times n}$ (i.e., overload f) as

$$f(A) = \beta_0 I + \beta_1 A + \beta_2 A^2 + \beta_3 A^3 + \cdots$$

substituting $A = T \Lambda T^{-1}$, we have

\[
\begin{align*}
 f(A) &= \beta_0 I + \beta_1 A + \beta_2 A^2 + \beta_3 A^3 + \cdots \\
 &= \beta_0 TT^{-1} + \beta_1 T \Lambda T^{-1} + \beta_2 (T \Lambda T^{-1})^2 + \cdots \\
 &= T \left(\beta_0 I + \beta_1 \Lambda + \beta_2 \Lambda^2 + \cdots \right) T^{-1} \\
 &= T \, \text{diag}(f(\lambda_1), \ldots, f(\lambda_n)) T^{-1}
\end{align*}
\]
Solution via diagonalization

assume A is diagonalizable

consider LDS $\dot{x} = Ax$, with $T^{-1}AT = \Lambda$

then

$$x(t) = e^{tA}x(0) = Te^{\Lambda t}T^{-1}x(0) = \sum_{i=1}^{n} e^{\lambda_i t} (w_i^T x(0)) v_i$$

thus: any trajectory can be expressed as linear combination of modes
interpretation:

• (left eigenvectors) decompose initial state $x(0)$ into modal components $w_i^T x(0)$

• $e^{\lambda_i t}$ term propagates ith mode forward t seconds

• reconstruct state as linear combination of (right) eigenvectors
application: for what $x(0)$ do we have $x(t) \to 0$ as $t \to \infty$?

divide eigenvalues into those with negative real parts

$$\Re \lambda_1 < 0, \ldots, \Re \lambda_s < 0,$$

and the others,

$$\Re \lambda_{s+1} \geq 0, \ldots, \Re \lambda_n \geq 0$$

from

$$x(t) = \sum_{i=1}^{n} e^{\lambda_i t} (w_i^T x(0)) v_i$$

condition for $x(t) \to 0$ is:

$$x(0) \in \text{span}\{v_1, \ldots, v_s\},$$

or equivalently,

$$w_i^T x(0) = 0, \quad i = s + 1, \ldots, n$$

(can you prove this?)
Stability of discrete-time systems

suppose A diagonalizable

consider discrete-time LDS $x(t + 1) = Ax(t)$

if $A = TΛT^{-1}$, then $A^k = TΛ^kT^{-1}$

then

$$x(t) = A^t x(0) = \sum_{i=1}^{n} \lambda_i^t (w_i^T x(0)) v_i \to 0 \quad \text{as} \quad t \to \infty$$

for all $x(0)$ if and only if

$$|λ_i| < 1, \quad i = 1, \ldots, n.$$

we will see later that this is true even when A is not diagonalizable, so we have

fact: $x(t + 1) = Ax(t)$ is stable if and only if all eigenvalues of A have magnitude less than one