Lecture 15
Symmetric matrices, quadratic forms, matrix norm, and SVD

• eigenvectors of symmetric matrices

• quadratic forms

• inequalities for quadratic forms

• positive semidefinite matrices

• norm of a matrix

• singular value decomposition
suppose $A \in \mathbb{R}^{n \times n}$ is symmetric, i.e., $A = A^T$

fact: the eigenvalues of A are real

to see this, suppose $Av = \lambda v$, $v \neq 0$, $v \in \mathbb{C}^n$

then

$$\bar{v}^T A v = \bar{v}^T (Av) = \lambda \bar{v}^T v = \lambda \sum_{i=1}^{n} |v_i|^2$$

but also

$$\bar{v}^T A v = (Av)^T v = (\lambda v)^T v = \bar{\lambda} \sum_{i=1}^{n} |v_i|^2$$

so we have $\lambda = \bar{\lambda}$, i.e., $\lambda \in \mathbb{R}$ (hence, can assume $v \in \mathbb{R}^n$)
Eigenvectors of symmetric matrices

fact: there is a set of orthonormal eigenvectors of A, i.e., q_1, \ldots, q_n s.t.

$$Aq_i = \lambda_i q_i, \quad q_i^T q_j = \delta_{ij}$$

in matrix form: there is an orthogonal Q s.t.

$$Q^{-1}AQ = Q^T AQ = \Lambda$$

hence we can express A as

$$A = Q\Lambda Q^T = \sum_{i=1}^{n} \lambda_i q_i q_i^T$$

in particular, q_i are both left and right eigenvectors
Interpretations

\[A = Q \Lambda Q^T \]

A linear mapping \(y = Ax \) can be decomposed as:

- resolve into \(q_i \) coordinates
- scale coordinates by \(\lambda_i \)
- reconstitute with basis \(q_i \)
or, geometrically,

- rotate by Q^T
- diagonal real scale (‘dilation’) by Λ
- rotate back by Q

decomposition

$$A = \sum_{i=1}^{n} \lambda_i q_i q_i^T$$

expresses A as linear combination of 1-dimensional projections
example:

\[A = \begin{bmatrix} -1/2 & 3/2 \\ 3/2 & -1/2 \end{bmatrix} \]

\[= \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \right) \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \right)^T \]
proof (case of λ_i distinct)

suppose v_1, \ldots, v_n is a set of linearly independent eigenvectors of A:

$$Av_i = \lambda_i v_i, \quad \|v_i\| = 1$$

then we have

$$v_i^T(Av_j) = \lambda_j v_i^T v_j = (Av_i)^T v_j = \lambda_i v_i^T v_j$$

so $(\lambda_i - \lambda_j)v_i^T v_j = 0$

for $i \neq j$, $\lambda_i \neq \lambda_j$, hence $v_i^T v_j = 0$

- in this case we can say: eigenvectors are orthogonal
- in general case (λ_i not distinct) we must say: eigenvectors can be chosen to be orthogonal
Example: RC circuit

\[c_k \dot{v}_k = -i_k, \quad i = Gv \]

\[G = G^T \in \mathbb{R}^{n \times n} \text{ is conductance matrix of resistive circuit} \]

thus \(\dot{v} = -C^{-1}Gv \) where \(C = \text{diag}(c_1, \ldots, c_n) \)

note \(-C^{-1}G\) is not symmetric
use state $x_i = \sqrt{c_i}v_i$, so

$$\dot{x} = C^{1/2}\dot{v} = -C^{-1/2}GC^{-1/2}x$$

where $C^{1/2} = \text{diag}(\sqrt{c_1}, \ldots, \sqrt{c_n})$

we conclude:

- eigenvalues $\lambda_1, \ldots, \lambda_n$ of $-C^{-1/2}GC^{-1/2}$ (hence, $-C^{-1}G$) are real
- eigenvectors q_i (in x_i coordinates) can be chosen orthogonal
- eigenvectors in voltage coordinates, $s_i = C^{-1/2}q_i$, satisfy

$$-C^{-1}Gs_i = \lambda_i s_i, \quad s_i^T Cs_i = \delta_{ij}$$
Quadratic forms

a function $f : \mathbb{R}^n \to \mathbb{R}$ of the form

$$f(x) = x^T Ax = \sum_{i,j=1}^{n} A_{ij}x_i x_j$$

is called a **quadratic form**

in a quadratic form we may as well assume $A = A^T$ since

$$x^T Ax = x^T ((A + A^T)/2)x$$

$((A + A^T)/2$ is called the **symmetric part** of A)

uniqueness: if $x^T Ax = x^T Bx$ for all $x \in \mathbb{R}^n$ and $A = A^T$, $B = B^T$, then $A = B$
Examples

- \(\|Bx\|^2 = x^T B^T B x \)
- \(\sum_{i=1}^{n-1} (x_{i+1} - x_i)^2 \)
- \(\|Fx\|^2 - \|Gx\|^2 \)

sets defined by quadratic forms:

- \(\{ x \mid f(x) = a \} \) is called a \textit{quadratic surface}
- \(\{ x \mid f(x) \leq a \} \) is called a \textit{quadratic region}
Inequalities for quadratic forms

suppose $A = A^T$, $A = Q\Lambda Q^T$ with eigenvalues sorted so $\lambda_1 \geq \cdots \geq \lambda_n$

\[
x^T A x = x^T Q\Lambda Q^T x = (Q^T x)^T \Lambda (Q^T x) = \sum_{i=1}^{n} \lambda_i (q_i^T x)^2 \leq \lambda_1 \sum_{i=1}^{n} (q_i^T x)^2 = \lambda_1 \|x\|^2
\]

i.e., we have $x^T A x \leq \lambda_1 x^T x$
similar argument shows $x^T A x \geq \lambda_n \|x\|^2$, so we have

$$\lambda_n x^T x \leq x^T A x \leq \lambda_1 x^T x$$

sometimes λ_1 is called λ_{max}, λ_n is called λ_{min}

note also that

$$q_1^T A q_1 = \lambda_1 \|q_1\|^2, \quad q_n^T A q_n = \lambda_n \|q_n\|^2,$$

so the inequalities are tight
Positive semidefinite and positive definite matrices

suppose \(A = A^T \in \mathbb{R}^{n \times n} \)

we say \(A \) is positive semidefinite if \(x^T Ax \geq 0 \) for all \(x \)

- denoted \(A \geq 0 \) (and sometimes \(A \preceq 0 \))
- \(A \geq 0 \) if and only if \(\lambda_{\min}(A) \geq 0 \), \(i.e. \), all eigenvalues are nonnegative
- **not** the same as \(A_{ij} \geq 0 \) for all \(i, j \)

we say \(A \) is positive definite if \(x^T Ax > 0 \) for all \(x \neq 0 \)

- denoted \(A > 0 \)
- \(A > 0 \) if and only if \(\lambda_{\min}(A) > 0 \), \(i.e. \), all eigenvalues are positive
Matrix inequalities

• we say A is **negative semidefinite** if $-A \geq 0$

• we say A is **negative definite** if $-A > 0$

• otherwise, we say A is **indefinite**

matrix inequality: if $B = B^T \in \mathbb{R}^n$ we say $A \geq B$ if $A - B \geq 0$, $A < B$ if $B - A > 0$, etc.

for example:

• $A \geq 0$ means A is positive semidefinite

• $A > B$ means $x^T A x > x^T B x$ for all $x \neq 0$
many properties that you’d guess hold actually do, e.g.,

- if $A \geq B$ and $C \geq D$, then $A + C \geq B + D$
- if $B \leq 0$ then $A + B \leq A$
- if $A \geq 0$ and $\alpha \geq 0$, then $\alpha A \geq 0$
- $A^2 \geq 0$
- if $A > 0$, then $A^{-1} > 0$

Matrix inequality is only a partial order: we can have

$$A \not\geq B, \quad B \not\geq A$$

(such matrices are called incomparable)
Ellipsoids

if \(A = A^T > 0 \), the set

\[
\mathcal{E} = \{ \ x \ | \ x^T A x \leq 1 \ \}
\]

is an ellipsoid in \(\mathbb{R}^n \), centered at 0
semi-axes are given by \(s_i = \lambda_i^{-1/2} q_i \), \(i.e. \):

- eigenvectors determine directions of semi-axes
- eigenvalues determine lengths of semi-axes

note:

- in direction \(q_1 \), \(x^T A x \) is \textit{large}, hence ellipsoid is \textit{thin} in direction \(q_1 \)
- in direction \(q_n \), \(x^T A x \) is \textit{small}, hence ellipsoid is \textit{fat} in direction \(q_n \)
- \(\sqrt{\lambda_{\text{max}}/\lambda_{\text{min}}} \) gives maximum \textit{eccentricity}

if \(\tilde{\mathcal{E}} = \{ x \mid x^T B x \leq 1 \} \), where \(B > 0 \), then \(\mathcal{E} \subseteq \tilde{\mathcal{E}} \iff A \geq B \)
Gain of a matrix in a direction

suppose \(A \in \mathbb{R}^{m \times n} \) (not necessarily square or symmetric)

for \(x \in \mathbb{R}^n, \|Ax\|/\|x\| \) gives the amplification factor or gain of \(A \) in the direction \(x \)

obviously, gain varies with direction of input \(x \)

questions:

• what is maximum gain of \(A \)
 (and corresponding maximum gain direction)?

• what is minimum gain of \(A \)
 (and corresponding minimum gain direction)?

• how does gain of \(A \) vary with direction?
Matrix norm

the maximum gain

\[
\max_{x \neq 0} \frac{\|Ax\|}{\|x\|}
\]

is called the *matrix norm* or *spectral norm* of \(A\) and is denoted \(\|A\|\)

\[
\max_{x \neq 0} \frac{\|Ax\|^2}{\|x\|^2} = \max_{x \neq 0} \frac{x^T A^T Ax}{\|x\|^2} = \lambda_{\text{max}}(A^T A)
\]

so we have \(\|A\| = \sqrt{\lambda_{\text{max}}(A^T A)}\)

similarly the minimum gain is given by

\[
\min_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \sqrt{\lambda_{\text{min}}(A^T A)}
\]
note that

- \(A^T A \in \mathbb{R}^{n \times n} \) is symmetric and \(A^T A \geq 0 \) so \(\lambda_{\text{min}}, \lambda_{\text{max}} \geq 0 \)

- ‘max gain’ input direction is \(x = q_1 \), eigenvector of \(A^T A \) associated with \(\lambda_{\text{max}} \)

- ‘min gain’ input direction is \(x = q_n \), eigenvector of \(A^T A \) associated with \(\lambda_{\text{min}} \)
example: $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$

$A^T A = \begin{bmatrix} 35 & 44 \\ 44 & 56 \end{bmatrix}$

$= \begin{bmatrix} 0.620 & 0.785 \\ 0.785 & -0.620 \end{bmatrix} \begin{bmatrix} 90.7 & 0 \\ 0 & 0.265 \end{bmatrix} \begin{bmatrix} 0.620 & 0.785 \\ 0.785 & -0.620 \end{bmatrix}^T$

then $\|A\| = \sqrt{\lambda_{\text{max}}(A^T A)} = 9.53$:

$\left\| \begin{bmatrix} 0.620 \\ 0.785 \end{bmatrix} \right\| = 1, \quad \left\| A \begin{bmatrix} 0.620 \\ 0.785 \end{bmatrix} \right\| = \left\| \begin{bmatrix} 2.18 \\ 4.99 \\ 7.78 \end{bmatrix} \right\| = 9.53$
min gain is \(\sqrt{\lambda_{\text{min}}(A^T A)} = 0.514 \):

\[
\left\| \begin{bmatrix} 0.785 \\ -0.620 \end{bmatrix} \right\| = 1, \quad \left\| A \begin{bmatrix} 0.785 \\ -0.620 \end{bmatrix} \right\| = \left\| \begin{bmatrix} 0.46 \\ 0.14 \\ -0.18 \end{bmatrix} \right\| = 0.514
\]

for all \(x \neq 0 \), we have

\[
0.514 \leq \frac{\|Ax\|}{\|x\|} \leq 9.53
\]
Properties of matrix norm

- consistent with vector norm: matrix norm of $a \in \mathbb{R}^{n \times 1}$ is
 $$\sqrt{\lambda_{\text{max}}(a^T a)} = \sqrt{a^T a}$$

- for any x, $\|Ax\| \leq \|A\| \|x\|$

- scaling: $\|aA\| = |a| \|A\|$

- triangle inequality: $\|A + B\| \leq \|A\| + \|B\|$

- definiteness: $\|A\| = 0 \iff A = 0$

- norm of product: $\|AB\| \leq \|A\| \|B\|$
Singular value decomposition

more complete picture of gain properties of A given by *singular value decomposition* (SVD) of A:

$$A = U \Sigma V^T$$

where

- $A \in \mathbb{R}^{m \times n}$, $\text{Rank}(A) = r$
- $U \in \mathbb{R}^{m \times r}$, $U^T U = I$
- $V \in \mathbb{R}^{n \times r}$, $V^T V = I$
- $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_r)$, where $\sigma_1 \geq \cdots \geq \sigma_r > 0$

Symmetric matrices, quadratic forms, matrix norm, and SVD
with $U = [u_1 \cdots u_r]$, $V = [v_1 \cdots v_r]$,

$$A = U \Sigma V^T = \sum_{i=1}^{r} \sigma_i u_i v_i^T$$

- σ_i are the (nonzero) singular values of A
- v_i are the right or input singular vectors of A
- u_i are the left or output singular vectors of A
\[A^T A = (U \Sigma V^T)^T (U \Sigma V^T) = V \Sigma^2 V^T \]

hence:

- \(v_i \) are eigenvectors of \(A^T A \) (corresponding to nonzero eigenvalues)
- \(\sigma_i = \sqrt{\lambda_i(A^T A)} \) (and \(\lambda_i(A^T A) = 0 \) for \(i > r \))
- \(\|A\| = \sigma_1 \)
similarly,

\[AA^T = (U\Sigma V^T)(U\Sigma V^T)^T = U\Sigma^2 U^T \]

hence:

- \(u_i \) are eigenvectors of \(AA^T \) (corresponding to nonzero eigenvalues)

- \(\sigma_i = \sqrt{\lambda_i(AA^T)} \) (and \(\lambda_i(AA^T) = 0 \) for \(i > r \))

- \(u_1, \ldots, u_r \) are orthonormal basis for \(\text{range}(A) \)

- \(v_1, \ldots, v_r \) are orthonormal basis for \(\mathcal{N}(A)^\perp \)
Interpretations

\[A = U \Sigma V^T = \sum_{i=1}^{r} \sigma_i u_i v_i^T \]

linear mapping \(y = Ax \) can be decomposed as

- compute coefficients of \(x \) along input directions \(v_1, \ldots, v_r \)
- scale coefficients by \(\sigma_i \)
- reconstitute along output directions \(u_1, \ldots, u_r \)

difference with eigenvalue decomposition for symmetric \(A \): input and output directions are different
• v_1 is most sensitive (highest gain) input direction

• u_1 is highest gain output direction

• $Av_1 = \sigma_1 u_1$
SVD gives clearer picture of gain as function of input/output directions

example: consider $A \in \mathbb{R}^{4 \times 4}$ with $\Sigma = \text{diag}(10, 7, 0.1, 0.05)$

- input components along directions v_1 and v_2 are amplified (by about 10) and come out mostly along plane spanned by u_1, u_2
- input components along directions v_3 and v_4 are attenuated (by about 10)
- $\|Ax\|/\|x\|$ can range between 10 and 0.05
- A is nonsingular
- for some applications you might say A is *effectively* rank 2
example: $A \in \mathbb{R}^{2 \times 2}$, with $\sigma_1 = 1$, $\sigma_2 = 0.5$

- resolve x along v_1, v_2: $v_1^T x = 0.5$, $v_2^T x = 0.6$, i.e., $x = 0.5v_1 + 0.6v_2$
- now form $Ax = (v_1^T x)\sigma_1 u_1 + (v_2^T x)\sigma_2 u_2 = (0.5)(1)u_1 + (0.6)(0.5)u_2$