Lecture 3
Linear Equations and Matrices

- linear functions
- linear equations
- solving linear equations
Linear functions

function f maps n-vectors into m-vectors is linear if it satisfies:

- **scaling**: for any n-vector x, any scalar α, $f(\alpha x) = \alpha f(x)$

- **superposition**: for any n-vectors u and v, $f(u + v) = f(u) + f(v)$

example: $f(x) = y$, where $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $y = \begin{bmatrix} x_3 - 2x_1 \\ 3x_1 - 2x_2 \end{bmatrix}$

let's check scaling property:

$$f(\alpha x) = \begin{bmatrix} (\alpha x_3) - 2(\alpha x_1) \\ 3(\alpha x_1) - 2(\alpha x_2) \end{bmatrix} = \alpha \begin{bmatrix} x_3 - 2x_1 \\ 3x_1 - 2x_2 \end{bmatrix} = \alpha f(x)$$
Matrix multiplication and linear functions

general example: \(f(x) = Ax \), where \(A \) is \(m \times n \) matrix

- scaling: \(f(\alpha x) = A(\alpha x) = \alpha Ax = \alpha f(x) \)
- superposition: \(f(u + v) = A(u + v) = Au + Av = f(u) + f(v) \)

so, matrix multiplication is a linear function

converse: every linear function \(y = f(x) \), with \(y \) an \(m \)-vector and \(x \) and \(n \)-vector, can be expressed as \(y = Ax \) for some \(m \times n \) matrix \(A \)

you can get the coefficients of \(A \) from \(A_{ij} = y_i \) when \(x = e_j \)
Composition of linear functions

suppose

- \(m \)-vector \(y \) is a linear function of \(n \)-vector \(x \), i.e., \(y = Ax \) where \(A \) is \(m \times n \)
- \(p \)-vector \(z \) is a linear function of \(y \), i.e., \(z = By \) where \(B \) is \(p \times m \).

then \(z \) is a linear function of \(x \), and \(z = By = (BA)x \)

so matrix multiplication corresponds to composition of linear functions, i.e., linear functions of linear functions of some variables
Linear equations

an equation in the variables x_1, \ldots, x_n is called linear if each side consists of a sum of multiples of x_i, and a constant, e.g.,

$$1 + x_2 = x_3 - 2x_1$$

is a linear equation in x_1, x_2, x_3

any set of m linear equations in the variables x_1, \ldots, x_n can be represented by the compact matrix equation

$$Ax = b,$$

where A is an $m \times n$ matrix and b is an m-vector
Example

two equations in three variables x_1, x_2, x_3:

$$1 + x_2 = x_3 - 2x_1, \quad x_3 = x_2 - 2$$

step 1: rewrite equations with variables on the lefthand side, lined up in columns, and constants on the righthand side:

$$2x_1 + x_2 - x_3 = -1$$
$$0x_1 - x_2 + x_3 = -2$$

(each row is one equation)
step 2: rewrite equations as a single matrix equation:

\[
\begin{bmatrix}
2 & 1 & -1 \\
0 & -1 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
-1 \\
-2
\end{bmatrix}
\]

- \(i\)th row of \(A\) gives the coefficients of the \(i\)th equation
- \(j\)th column of \(A\) gives the coefficients of \(x_j\) in the equations
- \(i\)th entry of \(b\) gives the constant in the \(i\)th equation
Solving linear equations

suppose we have n linear equations in n variables x_1, \ldots, x_n

let’s write it in compact matrix form as $Ax = b$, where A is an $n \times n$ matrix, and b is an n-vector

suppose A is invertible, i.e., its inverse A^{-1} exists

multiply both sides of $Ax = b$ on the left by A^{-1}:

$$A^{-1}(Ax) = A^{-1}b.$$

lefthand side simplifies to $A^{-1}Ax = Ix = x$, so we’ve solved the linear equations: $x = A^{-1}b$
so multiplication by *matrix inverse* solves a set of linear equations

some comments:

- $x = A^{-1}b$ makes solving set of 100 linear equations in 100 variables *look* simple, but the notation is hiding a lot of work!

- fortunately, it’s very easy (and fast) for a computer to compute $x = A^{-1}b$ (even when x has dimension 100, or much higher)

many scientific, engineering, and statistics application programs

- from user input, set up a set of linear equations $Ax = b$
- solve the equations
- report the results in a nice way to the user
when A isn’t invertible, *i.e.*, inverse doesn’t exist,

- one or more of the equations is redundant
 (*i.e.*, can be obtained from the others)
- the equations are inconsistent or contradictory

(these facts are studied in linear algebra)

in practice: A isn’t invertible means you’ve set up the wrong equations, or don’t have enough of them
Solving linear equations in practice

To solve $Ax = b$ (i.e., compute $x = A^{-1}b$) by computer, we don’t compute A^{-1}, then multiply it by b (but that would work!)

Practical methods compute $x = A^{-1}b$ directly, via specialized methods (studied in numerical linear algebra)

Standard methods, that work for any (invertible) A, require about n^3 multiplies & adds to compute $x = A^{-1}b$

But modern computers are very fast, so solving say a set of 500 equations in 500 variables takes only a few seconds, even on a small computer

... which is simply amazing
Solving equations with sparse matrices

in many applications A has many, or almost all, of its entries equal to zero, in which case it is called *sparse*

this means each equation involves only some (often just a few) of the variables

sparse linear equations can be solved by computer very efficiently, using *sparse matrix techniques* (studied in numerical lineae algebra)

it’s not uncommon to solve for hundreds of thousands of variables, with hundreds of thousands of (sparse) equations, even on a small computer

... which is **truly amazing**

(and the basis for many engineering and scientific programs, like simulators and computer-aided design tools)