
EE263 Prof. S. Boyd
Dec. 7–8 or Dec. 8–9, 2007.

Final exam solutions

1. Optimal initial conditions for a bioreactor. The dynamics of a bioreactor are given by
ẋ(t) = Ax(t), where x(t) ∈ R

n is the state, with xi(t) representing the total mass of
species or component i at time t. Component i has (positive) value (or cost) ci, so
the total value (or cost) of the components at time t is cT x(t). (We ignore any extra
cost that would be incurred in separating the components.) Your job is to choose
the initial state, under a budget constraint, that maximizes the total value at time T .
More specifically, you are to choose x(0), with all entries nonnegative, that satisfies
cT x(0) ≤ B, where B is a given positive budget. The problem data (i.e., things you
know) are A, c, T , and B.

You can assume that A is such that, for any x(0) with nonnegative components, x(t)
will also have all components nonnegative, for any t ≥ 0. (This occurs, by the way, if
and only if the off-diagonal entries of A are nonnegative.)

(a) Explain how to solve this problem.

(b) Carry out your method on the specific instance with data

A =

0.1 0.1 0.3 0
0 0.2 0.4 0.3

0.1 0.3 0.1 0
0 0 0.2 0.1

, c =

3.5
0.6
1.1
2.0

, T = 10, B = 1.

Give the optimal x(0), and the associated (optimal) terminal value cT x(T).

Give us the terminal value obtained when the initial state has equal mass in each
component, i.e., x(0) = α1, with α adjusted so that the total initial cost is B.
Compare this with the optimal terminal value.

Also give us the terminal value obtained when the same amount, B/n, is spent
on each initial state component (i.e., x(0)i = B/(nci)). Compare this with the
optimal terminal value.

Solution.

(a) We have cT x(T) = cT etAx(0) = bT x(0), where we define b = (eTA)T c, so our
problem is to maximize bT x(0), subject to x(0) ≥ 0 (this means all its entries are
nonnegative), and cT x(0) ≤ B. You can think of ci as the cost of investing in a
unit of component i, and bi as the payoff received. Thus, the gain is bi/ci. The

1

solution to this problem is to invest everything (i.e., the whole budget B) in any
component that has maximum gain. More formally, we choose any k for which
bk/ck = max{b1/c1, . . . , bn/cn}, and then set x(0) = Bek. (Recall that we assume
bi ≥ 0 and ci > 0 here.)

We didn’t require a completely formal proof that this is the optimal strategy.
But here is one, just so you know what one looks like. Suppose that x(0) satisfies
x(0) ≥ 0, cT x(0) ≤ B. Then we have

bT x(0) =
n
∑

i=1

(bi/ci)(cix(0)i)

≤
(

max
i=1,...,n

(bi/ci)
)

(

n
∑

i=1

cix(0)i

)

≤ B max
i=1,...,n

(bi/ci).

This shows that no feasible choice of x(0) can yield terminal value cT x(T) =
bT x(0) more than B maxi=1,...,n(bi/ci). But the choice described above yields this
value of bT x(0), and so must be optimal.

(b) The code below solves the problem.

% problem data

A=[0.1 0.1 0.3 0;

0 0.2 0.4 0.3;

0.1 0.3 0.1 0;

0 0 0.2 0.1];

c=[3.5; 0.6; 1.1; 2.0];

n=length(c);

T=10;

B=1;

b= (expm(T*A))’*c;

[g,k]=max(b./c); % get max value and index k

opt_x0=zeros(n,1);

opt_x0(k)=B/c(k);

opt_term_value=b’*opt_x0

opt_x0

% terminal value with equal mass in each initial component

x0mass=(B/sum(c))*ones(n,1);

term_value=b’*x0mass

% terminal value with equal value in each initial component

x0val=(B/n)./c;

term_value=b’*x0val

2

The optimal initial condition is x(0) = (5/3)e2, which yields terminal value 1168.

With equal initial mass in each component, the terminal value is 300; with equal
initial investment in each component, the terminal value is 552.

3

2. Simultaneously estimating student ability and exercise difficulty. Each of n students
takes an exam that contains m questions. Student j receives (nonnegative) grade Gij on

question i. One simple model for predicting the grades is to estimate Gij ≈ Ĝij = aj/di,
where aj is a (nonnegative) number that gives the ability of student j, and di is a
(positive) number that gives the difficulty of exam question i. Given a particular
model, we could simultaneously scale the student abilities and the exam difficulties by
any positive number, without affecting Ĝij. Thus, to ensure a unique model, we will
normalize the exam question difficulties di, so that the mean exam question difficulty
across the m questions is 1.

In this problem, you are given a complete set of grades (i.e., the matrix G ∈ R
m×n).

Your task is to find a set of nonnegative student abilities, and a set of positive, nor-
malized question difficulties, so that Gij ≈ Ĝij. In particular, choose your model to
minimize the RMS error, J ,

J =

1

mn

m
∑

i=1

n
∑

j=1

(

Gij − Ĝij

)2

1/2

.

This can be compared to the RMS value of the grades,

1

mn

m
∑

i=1

n
∑

j=1

G2
ij

1/2

.

(a) Explain how to solve this problem, using any concepts from EE263. If your
method is approximate, or not guaranteed to find the global minimum value of
J , say so. If carrying out your method requires some rank or other conditions to
hold, say so.

Note: You do not have to concern yourself with the requirement that aj are
nonnegative and di are positive. You can just assume this works out, or is easily
corrected.

(b) Carry out your method on the data found in grademodeldata.m. Give the optimal
value of J , and also express it as a fraction of the RMS value of the grades. Give
the difficulties of the 7 problems on the exam.

Solution. First we note that Ĝ is a rank-1 matrix, since we can write

Ĝ =

1/d1

1/d2
...

1/dm

[

a1 a2 · · · an

]

.

Our problem is to find the best rank-1 approximation to G, judged by the criterion

mnJ2 =
m
∑

i=1

n
∑

j=1

(

Gij − Ĝij

)2
= ‖G − Ĝ‖2

F ,

4

where ‖·‖F denotes the Frobenius norm. We mentioned in lecture 16 that this problem
has the same solution as minimizing ‖G − Ĝ‖, subject to Rank(Ĝ) = 1, i.e., the top
dyad in the SVD of G. Let

G =
r
∑

i=1

σiuiv
T
i

be the SVD of G. The optimal rank-1 approximation of G is

Ĝ = σ1u1v
T
1 .

(The optimal rank-1 approximation is unique if σ1 > σ2.) We can manipulate this
model into the required form. We take

ai =
mσ1v1i

∑n
j=1(1/u1j)

, i = 1, . . . , n,

and
di =

m

u1i
∑n

j=1(1/u1j)
, i = 1, . . . ,m.

The following Matlab code solves the problem.

grademodeldata;

% svd

[U,Sigma,V] = svd(G, ’econ’);

% extract the top dyad

u1 = U(:,1);

v1 = V(:,1);

s1 = Sigma(1,1);

% normalize d

a = m*s1*v1/sum(1./u1);

d = m./(sum(1./u1)*u1);

% compute optimal cost

Jopt = sqrt(1/(m*n))*norm(G-(1./d)*a’,’fro’)

RMSgrades = sqrt(1/(m*n))*norm(G,’fro’)

ratio=Jopt/RMSgrades

For the given data, we find

d1 = 0.9429,

d2 = 1.2780,

d3 = 0.9015,

d4 = 0.9197,

d5 = 0.7729,

d6 = 1.0418,

d7 = 1.1433.

5

The optimal fitting cost is J⋆ = 5.6759. The RMS value of the grades is 15.88, so the
optimal fitting cost is 0.3574 of the RMS value of the grades.

6

3. Optimal espresso cup pre-heating. At time t = 0 boiling water, at 100◦C, is poured into
an espresso cup; after P seconds (the ‘pre-heating time’), the water is poured out, and
espresso, with initial temperature 95◦C, is poured in. (You can assume this operation
occurs instantaneously.) The espresso is then consumed exactly 15 seconds later (yes,
instantaneously). The problem is to choose the pre-heating time P so as to maximize
the temperature of the espresso when it is consumed.

We now give the thermal model used. We take the temperature of the liquid in the cup
(water or espresso) as one state; for the cup we use an n-state finite element model.
The vector x(t) ∈ R

n+1 gives the temperature distribution at time t: x1(t) is the liquid
(water or espresso) temperature at time t, and x2(t), . . . , xn+1(t) are the temperatures
of the elements in the cup. All of these are in degrees C, with t in seconds. The
dynamics are

d

dt
(x(t) − 20 · 1) = A(x(t) − 20 · 1),

where A ∈ R
(n+1)×(n+1). (The vector 20 · 1, with all components 20, represents the

ambient temperature.) The initial temperature distribution is

x(0) =

100
20
...

20

.

At t = P , the liquid temperature changes instantly from whatever value it has, to 95;
the other states do not change. Note that the dynamics of the system are the same
before and after pre-heating (because we assume that water and espresso behave in the
same way, thermally speaking).

We have very generously derived the matrix A for you. You will find it in espressodata.m.
In addition to A, the file also defines n, and, respectively, the ambient, espresso and
preheat water temperatures Ta (which is 20), Te (95), and Tl (100).

Explain your method, submit your code, and give final answers, which must include the
optimal value of P and the resulting optimal espresso temperature when it is consumed.
Give both to an accuracy of one decimal place, as in

‘P = 23.5 s, which gives an espresso temperature at consumption of 62.3◦C.’

(This is not the correct answer, of course.)

Solution. After P seconds of pre-heating, we will have

x(P) − 20 · 1 = ePA(x(0) − 20 · 1).

Define a new vector x̃(P) with x̃i(P) = xi(P) for i = 2, . . . , n + 1, and x̃1(P) = 95.
(Thus, x̃(P) is the state immediately after the water is replaced with espresso.) The
temperature distribution at time P + 15 will be

x(P + 15) − 20 · 1 = e15A(x̃(P) − 20 · 1).

7

We now have a method for calculating the temperature of the espresso at the instant
of consumption for a given P :

T (P) − 20 = eT
1 x(P + 15) = eT

1 e15A(x̃(P) − 20 · 1),

where e1 is the first unit vector. Thus, we have

T (P) = eT
1 e15A(x̃(P) − 20 · 1) + 20.

To find the optimal value of P we use a simple search method, by calculating T (P)
over a finely-sampled range of values of P , and selecting the maximum value.

The optimal preheating time for this example is 11.1 seconds. This will give an espresso
temperature of 87.6◦C.

Matlab code to calculate the answers appears below.

% load data.

espressodata;

% Test a range of preheating times up to a minute.

Tphs = linspace(0, 60, 1000);

% Condition at instant when preheating liquid is added.

% Note change of coordinates by subtracting Ta (and elsewhere).

p0 = [Tl; Ta*ones(n,1)] - Ta;

y = zeros(size(Tphs));

for i = 1:length(Tphs)

Tph = Tphs(i);

% Find state after preheating by propagating forward.

xph = expm(Tph*A)*p0;

% Instantaneously add espresso, changing only the liquid portion of the

% state.

xph(1) = Te - Ta;

% Record temperature at time 15.

z = expm(15*A)*xph;

y(i) = z(1);

end

[Tmax, i] = max(y+Ta);

The graph below shows how preheat time affects the drinking temperature.

8

0 10 20 30 40 50 60
74

76

78

80

82

84

86

88

Preheat time

E
sp

re
ss

o
te

m
pe

ra
tu

re
 a

fte
r

15
 s

ec
on

ds

Temperature of espresso after 15 seconds, with varying preheat time

The next graph shows the temperature of the espresso over a 5 minute period, with
and without preheating.

0 10 20 30 40 50 60
65

70

75

80

85

90

95

Time after espresso pour

T
em

pe
ra

tu
re

 o
f e

sp
re

ss
o

The difference between a cold and warm cup

9

4. Optimal dynamic purchasing. You are to complete a large order to buy a certain num-
ber, B, of shares in some company. You are to do this over T time periods. (Depending
on the circumstances, a single time period could be between tens of milliseconds and
minutes.) We will let bt denote the number of shares bought in time period t, for
t = 1, . . . , T , so we have b1 + · · ·+ bT = B. (The quantities B, b1, . . . , bT can all be any
real number; bt < 0, for example, means we sold shares in the period t. We also don’t
require bt to be integers.) We let pt denote the price per share in period t, so the total
cost of purchasing the B shares is C = p1b1 + · · · + pT bT .

The amounts we purchase are large enough to have a noticeable effect on the price of
the shares. The prices change according to the following equations:

p1 = p̄ + αb1, pt = θpt−1 + (1 − θ)p̄ + αbt, t = 2, . . . , T.

Here p̄ is the base price of the shares and α and θ are parameters that determine how
purchases affect the prices. The parameter α, which is positive, tells us how much the
price goes up in the current period when we buy one share. The parameter θ, which
lies between 0 and 1, measures the memory : If θ = 0 the share price has no memory,
and the purchase made in period t only affects the price in that period; if θ is 0.5 (say),
the effect a purchase has on the price decays by a factor of two between periods. If
θ = 1, the price has perfect memory and the price change will persist for all future
periods.

If purchases didn’t increase the price, the cost of purchasing the shares would always
be p̄B. The difference between the total cost and this cost, C − p̄B, is called the
transaction cost.

Find the purchase quantities b1, . . . , bT that minimize the transaction cost C − p̄B, for
the particular problem instance with

B = 10000, T = 10, p̄ = 10, θ = 0.8, α = 0.00015.

Give the optimal transaction cost. Also give the transaction cost if all the shares were
purchased in the first period, and the transaction cost if the purchases were evenly
spread over the periods (i.e., if 1000 shares were purchased in each period). Compare
these three quantities.

You must explain your method clearly, using any concepts from this class, such as least-
squares, pseudo-inverses, eigenvalues, singular values, etc. If your method requires that
some rank or other conditions to hold, say so. You must also check, in your Matlab
code, that these conditions are satisfied for the given problem instance.

Solution. We first derive a compact expression for p, the vector of prices, in terms of
b, the vector of purchase amounts. By iterating the price process, we get

p1 = p̄ + αb1

p2 = p̄ + αb2 + αθb1

10

p3 = p̄ + αb3 + αθb2 + αθ2b1

...

pT = p̄ + αbT + αθbT−1 + · · · + αθT−1b1.

We write this as p = p̄1 + Ab, where A ∈ R
T×T is the (lower triangular Toeplitz)

matrix with

Aij =

{

αθi−j i ≥ j
0 otherwise.

The cost is
C = bT p = bT (p̄1 + Ab) = p̄B + bT Ab,

since bT
1 = B. The first term, p̄B, is just the total cost if the purchases did not

increase the share price. The second term, bT Ab, is the transaction cost. So we see
now that the transaction cost is a quadratic form in b. The matrix A is not symmetric,
which can lead to trouble, so we’ll write the transaction cost as (1/2)bT (A + AT)b.

For our problem instance, we can check that A is indeed positive definite. Intuitively,
this must be the case; otherwise C can be made arbitrarily negative (i.e., we can make
an arbitrary profit).

To find the optimal purchase quantities b, we must solve the following optimization
problem:

minimize (1/2)bT (A + AT)b
subject to 1

T b = B,

with variable b. This not exactly a problem we’ve solved before, but we can solve it
using methods from the notes. (We’ll also see below how to convert it to a problem
we have solved before.)

The Lagrangian is

L(b, λ) = (1/2)bT (A + AT)b + λ
(

1
T b − B

)

,

and the optimality conditions are

∇bL(b, λ) = (A + AT)b + λ1 = 0, ∇λL(b, λ) = 1
T b − B = 0.

This can be written as
[

A + AT
1

1
T 0

] [

b
λ

]

=

[

0
B

]

,

and so
[

b
λ

]

=

[

A + AT
1

1
T 0

]−1 [

0
B

]

,

assuming that the block matrix is invertible. (It is, for our problem instance.)

11

Alternatively, we can solve the optimality conditions by block elimination. First we
consider ∇bL(b, λ) = 0, which gives b = −λ(A + AT)−1

1. The Lagrange multiplier λ
is chosen to satisfy ∇λL(b, λ) = 1

T b − B = 0. This gives

1
T b = −λ1

T (A + AT)−1
1 = B,

so λ = −B/1T (A + AT)−1
1, and we get

b =
B

1T (A + AT)−11
(A + AT)−1

1.

The associated transaction cost is

(1/2)bT (A + AT)b =
B2

2 (1T (A + AT)−11)21
T (A + AT)−1(A + AT)(A + AT)−1

1

=
B2

2 (1T (A + AT)−11)
.

Another way of solving the optimization problem is to rearrange it into a general norm
minimization problem with equality constraints, and refer directly to the solution given
in lecture slides 8-13 to 8-15. To do this, we note that A + AT is positive definite, so
we can find a symmetric matrix F ∈ R

T×T for which F 2 = A + AT . (Indeed, we can
take F = (A + AT)1/2.) This gives the optimization problem

minimize (1/2)‖Fb‖2

subject to 1
T b = B.

The solution then follows from lecture 8, and is, of course, exactly the same as the one
given above.

The following Matlab code solves the problem.

% problem instance

B = 10000; T = 10; pbar = 10; theta = 0.8; alpha = 0.00015;

% generate A matrix

A = zeros(T,T);

for i = 1:T for j = 1:i A(i,j) = alpha*theta^(i-j); end; end;

% check that A is positive definite

min(eig(A+A’))

% nominal cost (evenly spread purchases)

cnom = ((B/T)^2)*ones(T,1)’*A*ones(T,1);

% one period cost (all shares purchased in the first period)

conep = B^2*A(1,1);

% optimal cost

blam = [A+A’,ones(T,1);ones(T,1)’,0]\[zeros(T,1);B];

bopt = blam(1:T);

copt = bopt’*A*bopt;

12

For our problem instance, the transaction cost incurred if all the shares are purchased
in any single period (including the first) is 15000. If the purchases are evenly spread
(1000 per period), we incur a transaction cost of 4822.12. If we employ the optimal
strategy, we have a transaction cost of 4688.35.

13

5. Angle between two subspaces. The angle between two nonzero vectors v and w in R
n

is defined as

6 (v, w) = cos−1

(

vT w

‖v‖‖w‖

)

,

where we take cos−1(a) as being between 0 and π. We define the angle between a
nonzero vector v ∈ R

n and a (nonzero) subspace W ⊆ R
n as

6 (v,W) = min
w∈W, w 6=0

6 (v, w).

Thus, 6 (v,W) = 10◦ means that the smallest angle between v and any vector in W is
10◦. If v ∈ W, we have 6 (v,W) = 0.

Finally, we define the angle between two nonzero subspaces V and W as

6 (V ,W) = max
{

max
v∈V, v 6=0

6 (v,W), max
w∈W, w 6=0

6 (w,V)
}

.

This angle is zero if and only if the two subspaces are equal. If 6 (V ,W) = 10◦, say, it
means that either there is a vector in V whose minimum angle to any vector of W is
10◦, or there is a vector in W whose minimum angle to any vector of V is 10◦.

(a) Suppose you are given two matrices A ∈ R
n×r, B ∈ R

n×r, each of rank r. Let
V = range(A) and W = range(B). Explain how you could find or compute
6 (V ,W). You can use any of the concepts in the class, e.g., least-squares, QR
factorization, pseudo-inverse, norm, SVD, Jordan form, etc.

(b) Carry out your method for the matrices found in angsubdata.m. Give the nu-
merical value for 6 (range(A), range(B)).

Solution. We can write

cos 6 (V ,W) = min
{

min
v∈V,v 6=0

cos 6 (v,W), min
w∈W, w 6=0

cos 6 (w,V)
}

,

since cos(θ) is strictly decreasing as θ varies between 0 and π.

Taking the first part of this expression, we have

min
v∈V, v 6=0

cos 6 (v,W) = min
v∈V, v 6=0

max
w∈W, w 6=0

vT w

‖v‖‖w‖ = min
v∈V, ‖v‖=1

max
w∈W, ‖w‖=1

vT w.

Let V and W be matrices whose columns form orthonormal bases for V and W (i.e.,
range(V) = V , range(W) = W , V T V = I, and W T W = I). This implies

‖V x‖ = 1 ⇔ ‖x‖ = 1, ‖Wx‖ = 1 ⇔ ‖x‖ = 1.

Now we can write

min
v∈V, v 6=0

cos 6 (v,W) = min
‖y‖=1

max
‖x‖=1

yT V T Wx = min
‖y‖=1

‖W T V y‖ = σmin(W
T V).

14

Similarly, we have

min
w∈W, w 6=0

cos 6 (w,V) = σmin(V
T W) = σmin(W

T V) = min
v∈V, v 6=0

cos 6 (v,W).

Therefore,

cos 6 (V ,W) = min
{

min
v∈V, v 6=0

cos 6 (v,W), min
w∈W, w 6=0

cos 6 (w,V)
}

= σmin(W
T V) = σmin(V

T W),

and so,
6 (V ,W) = cos−1

(

σmin(V
T W)

)

.

Given two matrices A and B, we can find the angle between range(A) and range(B)
in Matlab by writing,

angle=acos(min(svd(orth(A)’*orth(B))))

For the particular A and B given in angsubdata.m, 6 (range(A), range(B)) = 72.83◦.

15

6. Extracting the faintest signal. An n-vector valued signal, x(t) ∈ R
n, is defined for

t = 1, . . . , T . We’ll refer to its ith component, xi(t), for t = 1, . . . , T , as the ith scalar
signal. The scalar signals x1, . . . , xn−1 have an RMS value substantially larger than
xn. In other words, xn is the faintest scalar signal. It is also the signal of interest for
this problem. We will assume that the scalar signals x1, . . . , xn are unrelated to each
other, and so are nearly uncorrelated (i.e., nearly orthogonal).

We aren’t given the vector signal x(t), but we are given a linear transformation of it,

y(t) = Ax(t), t = 1, . . . , T,

where A ∈ R
n×n is invertible. If we knew A, we could easily recover the original signal

(and therefore also the faintest scalar signal xn(t)), using x(t) = A−1y(t), t = 1, . . . , T .
But, sadly, we don’t know A.

Here is a heuristic method for guessing xn(t). We will form our estimate as

x̂n(t) = wT y(t), t = 1, . . . , T,

where w ∈ R
n is a vector of weights. Note that if w were chosen so that wT A = αeT

n ,
with α 6= 0 a constant, then we would have x̂n(t) = αxn(t), i.e., a perfect reconstruction
except for the scale factor α.

Now, the important part of our heuristic: we choose w to minimize the RMS value of
x̂n, subject to ‖w‖ = 1. Very roughly, one idea behind the heuristic is that, in general,
wT y is a linear combination of the scalar signals x1, . . . , xn. If the linear combination
has a small norm, that’s because the linear combination is ‘rich in xn’, and has only a
small amount of energy contributed by x1, . . . , xn−1. That, in fact, is exactly what we
want. In any case, you don’t need to worry about why the heuristic works (or doesn’t
work)—it’s the method you are going to use in this problem.

(a) Explain how to find a w that minimizes the RMS value of x̂n, using concepts from
the class (e.g., range, rank, least-squares, QR factorization, eigenvalues, singular
values, and so on).

(b) Carry out your method on the problem instance with n = 4, T = 26000, described
in the Matlab file faintestdata.m. This file will define an n×T matrix Y , where
the tth column of Y is the vector y(t). The file will also define n and T . Submit
your code, and give us the optimal weight vector w ∈ R

4 you find, along with the
associated RMS value of x̂n.

The following is not needed to solve the problem. The signals are actually au-
dio tracks, each 3.25 seconds long and sampled at 8 kHz. The Matlab file
faintestaudio.m contains commands to generate wave files of the linear com-
binations y1, . . . , y4, and a wave file of your estimate x̂n. You are welcome to
generate and listen to these files.

16

Solution. First, we pack y(t) into an n × T matrix Y , where the tth column of Y is
the vector y(t). Then the RMS value of our estimate x̂n(t) is given by (1/

√
T)‖wT Y ‖.

This expression is minimized over unit-length w when w is a left singular vector cor-
responding to the smallest singular value of Y .

The RMS value of our estimate x̂n(t), with this choice of w, will be (1/
√

T)σmin(Y).

In Matlab, this is simple. The code below shows a solution. Note the use of the flag
’econ’ to make the problem soluble.

[U, E, V] = svd(Y, ’econ’);

w = U(:,4)

xhatn = w’*Y;

sqrt(mean(xhatn.^2))

The optimal RMS value is 0.0061, when w = ±[−0.35 0.37 0.58 0.63]T .

17

7. Some true-false questions. In the following statements, A ∈ R
n×n, σmin refers to σn

(the nth largest singular value), and κ refers to the condition number. Tell us whether
each statement is true or false. ‘True’ means that the statement holds for any matrix
A ∈ R

n×n, for any n. ‘False’ means that the statement is not true. The only answers
we will read are ‘True’, ‘False’, and ‘My attorney has advised me to not answer this
question at this time’. (This last choice will receive partial credit.) If you write
anything else, you will receive no credit for that statement. In particular, do not write
justification for any answer, or provide any counter-examples.

(a) ‖eA‖ ≤ e‖A‖.

(b) σmin(e
A) ≥ eσmin(A).

(c) κ(eA) ≤ eκ(A).

(d) κ(eA) ≤ e2‖A‖.

(e) Rank(eA) ≥ Rank(A).

(f) Rank(eA − I) ≤ Rank(A).

Solution.

(a) ‖eA‖ ≤ e‖A‖. This one is true. To see this we use the power series expansion:

‖eA‖ = ‖I + A + (1/2!)A2 + · · · ‖
≤ ‖I‖ + ‖A‖ + ‖(1/2!)A2‖ + · · ·
= 1 + ‖A‖ + (1/2!)‖A‖2 + · · ·
= e‖A‖.

(b) σmin(e
A) ≥ eσmin(A). This is false. To see this we take

A =

[

1 0
0 −1

]

,

so that

eA =

[

e 0
0 1/e

]

.

So σmin(e
A) = 1/e < e = eσmin(A).

(c) κ(eA) ≤ eκ(A). This is false. We can take the same counterexample as part (b).
This gives

κ(eA) = e2 > e = eκ(A).

(d) κ(eA) ≤ e2‖A‖. This one is true. To see why, we note that ‖eA‖ ≤ e‖A‖, by part
(a). We also have

1

σmin(eA)
=
∥

∥

∥(eA)−1
∥

∥

∥ = ‖e−A‖ ≤ e‖−A‖ = e‖A‖.

18

It follows that σmin(e
A) ≥ e−‖A‖. Therefore we have

κ(eA) = ‖eA‖‖(eA)−1‖ ≤ e2‖A‖.

(e) Rank(eA) ≥ Rank(A). This is true. In fact, eA is nonsingular, no matter what
A is, so it has rank n.

(f) Rank(eA − I) ≤ Rank(A). This is true. If Av = 0, then Akv = 0 for any k ≥ 1.
it follows that (eA − I)v = 0, since eA − I has a power series that has no constant
term. Thus, we have N (A) ⊆ N (eA − I), and so dimN (A) ≤ dimN (eA − I). We
write this as

n − Rank(A) ≤ n − Rank(eA − I),

which gives the given inequality.

19

