
Chapter 8

n -dimensional Fourier Transform

8.1 Space, the Final Frontier

To quote Ron Bracewell from p. 119 of his bookTwo-Dimensional Imaging, \In two dimensions phenomena
are richer than in one dimension." True enough, working in two dimensions o�ers many new and rich
possibilities. Contemporary applications of the Fourier transform are just as likely to come from problems in
two, three, and even higher dimensions as they are in one | imaging is one obvious and important example.
To capitalize on the work we've already done, however, as well as to highlight di�erences between the one-
dimensional case and higher dimensions, we want to mimic theone-dimensional setting and arguments
as much as possible. It is a measure of the naturalness of the fundamental concepts that the extension
to higher dimensions of the basic ideas and the mathematicalde�nitions that we've used so far proceeds
almost automatically. However much we'll be able to do in class and in these notes, you should be able to
read more on your own with some assurance that you won't be reading anything too much di�erent from
what you've already read.

Notation The higher dimensional case looks most like the one-dimensional case when we use vector
notation. For the sheer thrill of it, I'll give many of the de� nitions in n dimensions, but to raise the comfort
level we'll usually look at the special case of two dimensions in more detail; two and three dimensions are
where most of our examples will come from.

We'll write a point in R n as ann-tuple, say

x = ( x1; x2; : : : ; xn ) :

Note that we're going back to the usual indexing from 1 to n. (And no more periodic extensions of the
n-tuples either!) We'll be taking Fourier transforms and may want to assign a physical meaning to our
variables, so we often think of thex i 's as coordinates in space, with the dimension of length, andx as
the \spatial variable". We'll then also need an n-tuple of \frequencies", and without saying yet what
\frequency" means, we'll (typically) write

� = ( � 1; � 2; : : : ; � n )

for those variables \dual to x ". Recall that the dot product of vectors in R n is given by

x � � = x1� 1 + x2� 2 + � � � + xn � n :

The geometry of R n is governed by the dot product, and using it will greatly help our understanding as
well as streamline our notation.
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8.1.1 The Fourier transform

We started this course with Fourier series and periodic phenomena and went on from there to de�ne the
Fourier transform. There's a place for Fourier series in higher dimensions, but, carrying all our hard won
experience with us, we'll proceed directly to the higher dimensional Fourier transform. I'll save Fourier
series for a later section that includes a really interesting application to random walks.

How shall we de�ne the Fourier transform? We consider real- or complex-valued functions f de�ned on
R n , and write f (x) or f (x1; : : : ; xn ), whichever is more convenient in context. The Fourier transform of
f (x) is the function F f (� ), or f̂ (� ), de�ned by

F f (� ) =
Z

R n
e� 2�i x �� f (x) dx :

The inverse Fourier transform of a function g(� ) is

F � 1g(x) =
Z

R n
e2�i x �� g(� ) d� :

The Fourier transform, or the inverse transform, of a real-valued function is (in general) complex valued.

The exponential now features the dot product of the vectorsx and � ; this is the key to extending the
de�nitions from one dimension to higher dimensions and making it look like one dimension. The integral
is over all of R n , and as ann-fold multiple integral all the x j 's (or � j 's for F � 1) go from �1 to 1 . Realize
that because the dot product of two vectors is a number, we'reintegrating a scalar function, not a vector
function. Overall, the shape of the de�nitions of the Fourier transform and the inverse transform are the
same as before.

The kinds of functions to consider and how they enter into thediscussion | Schwartz functions, L 1, L 2, etc.
| is entirely analogous to the one-dimensional case, and so are the de�nitions of these types of functions.
Because of that we don't have to redo distributions et al. (good news), and I'll seldom point out when this
aspect of the general theory is (or must be) invoked.

Written out in coordinates, the de�nition of the Fourier tra nsform reads:

F f (� 1; � 2; : : : ; � n ) =
Z

R n
e� 2�i (x1 � 1+ ���+ xn � n ) f (x1; : : : ; xn ) dx1 : : : dxn ;

so for two dimensions,

F f (� 1; � 2) =
Z 1

�1

Z 1

�1
e� 2�i (x1 � 1+ x2 � 2 ) f (x1; x2) dx1 dx2 :

The coordinate expression is manageable in the two-dimensional case, but I hope to convince you that it's
almost always much better to use the vector notation in writing formulas, deriv ing results, and so on.

Arithmetic with vectors, including the dot product, is pret ty much just like arithmetic with numbers.
Consequently, all of the familiar algebraic properties of the Fourier transform are present in the higher
dimensional setting. We won't go through them all, but, for example,

F f (� � ) =
Z

R n
e� 2�i x �(� � ) f (x) dx =

Z

R n
e2�i x �� f (x) dx = F � 1f (� ) ;

which is one way of stating the duality between the Fourier and inverse Fourier transforms. Here, recall
that if � = ( � 1; : : : ; � n ) then

� � = ( � � 1; : : : ; � � n ) :
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To be neater, we again use the notation
f � (� ) = f (� � ) ;

and with this de�nition the duality results read exactly as i n the one-dimensional case:

F f � = ( F f )� ; (F f )� = F � 1f

In connection with these formulas, I have to point out that changing variables, one of our prized techniques
in one dimension, can be more complicated for multiple integrals. We'll approach this on a need to know
basis.

It's still the case that the complex conjugate of the integral is the integral of the complex conjugate, so
when f (x) is real valued,

F f (� � ) = F f (� ) :

Finally, evenness and oddness are de�ned exactly as in the one-dimensional case. That is:

f (x) is even if f (� x ) = f (x ), or without writing the variables, if f � = f .

f (x) is odd f (� � ) = � f (� ), or f � = � f .

Of course, we no longer have quite the easy geometric interpretations of evenness and oddness in terms of a
graph in the higher dimensional case as we have in the one-dimensional case. But as algebraic properties of
a function, these conditions do have the familiar consequences for the higher dimensional Fourier transform,
e.g., if f (x) is even thenF f (� ) is even, if f (x ) is real and even thenF f (� ) is real and even,etc. You could
write them all out. I won't.

Soon enough we'll calculate the Fourier transform of some model functions, but �rst let's look a little bit
more at the complex exponentials in the de�nition and get a better sense of what \the spectrum" means
in higher dimensions.

Harmonics, periodicity, and spatial frequencies The complex exponentials are again the building
blocks | the harmonics | for the Fourier transform and its inv erse in higher dimensions. Now that they
involve a dot product, is there anything special we need to know?

As mentioned just above, we tend to viewx = ( x1; : : : ; xn ) as a spatial variable and � = ( � 1; : : : ; � n )
as a frequency variable. It's not hard to imagine problems where one would want to specify n spatial
dimensions each with the unit of distance, but it's not so clear what an n-tuple of frequencies should mean.
One thing we can say is that if the spatial variables (x1; : : : ; xn ) do have the dimension of distance then
the corresponding frequency variables (� 1; : : : ; � n ) have the dimension 1/distance. For then

x � � = x1� 1 + � � � + xn � n

is dimensionless and exp(� 2�i x � � ) makes sense. This corresponds to dimensions of time and 1/time in
the one-dimensional time domain and frequency domain picture.

For some further insight let's look at the two-dimensional case. Consider

exp(� 2�i x � � ) = exp( � 2�i (x1� 1 + x2� 2)) :
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(It doesn't matter for the following discussion whether we take + or � in the exponent.) The exponent
equals 1 wheneverx � � is an integer, that is, when

� 1x1 + � 2x2 = n; n an integer:

With � = ( � 1; � 2) �xed this is a condition on ( x1; x2), and one says that the complex exponential haszero
phasewhenever� 1x1 + � 2x2 is an integer. This terminology comes from optics.

There's a natural geometric interpretation of the zero phase condition that's very helpful in understanding
the most important properties of the complex exponential. For a �xed � the equations

� 1x1 + � 2x2 = n

determine a family of parallel lines in the (x1; x2)-plane (or in the spatial domain if you prefer that phrase).
Take n = 0. Then the condition on x1 and x2 is

� 1x1 + � 2x2 = 0

and we recognize this as the equation of a line through the origin with ( � 1; � 2) as a normal vector to the
line.1 (Remember your vectors!) Then (� 1; � 2) is a normal to each of the parallel lines in the family. One
could also describe the geometry of the situation by saying that the lines each make an angle� with the
x1-axis satisfying

tan � =
� 2

� 1
;

but I think it's much better to think in terms of normal vector s to specify the direction | the vector point
of view generalizes readily to higher dimensions, as we'll discuss.

Furthermore, the family of lines � 1x1 + � 2x2 = n are evenly spaced asn varies; in fact, the distance between
the line � 1x1 + � 2x2 = n and the line � 1x1 + � 2x2 = n + 1 is

distance =
1

k� k
=

1
p

� 2
1 + � 2

2

:

I'll let you derive that. This is our �rst hint, in two dimensi ons, of a reciprocal relationship between the
spatial and frequency variables:

� The spacing of adjacent lines of zero phase is the reciprocalof the length of the frequency vector.

Drawing the family of parallel lines with a �xed normal � also gives us some sense of the periodic nature
of the harmonics exp(� 2�i x � � ). The frequency vector � = ( � 1; � 2), as a normal to the lines, determines
how the harmonic is oriented, so to speak, and the magnitude of � , or rather its reciprocal, 1=

p
� 2

1 + � 2
2

determines the period of the harmonic. To be precise, start at any point ( a; b) and move in the direction
of the unit normal, � =k� k. That is, move from (a; b) along the line

x(t) = ( x1(t); x2(t)) = ( a; b) + t
�

k� k
or x1(t) = a + t

� 1

k� k
; x2(t) = b+ t

� 2

k� k

at unit speed. The dot product of x(t) and � is

x(t) � � = ( x1(t); x2(t)) � (� 1; � 2) = a� 1 + b�2 + t
� 2

1 + � 2
2

k� k
= a� 1 + b�2 + tk� k ;

1 Note that ( � 1 ; � 2) isn't assumed to be a unit vector, so it's not the unit normal .
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and the complex exponential is a function oft along the line:

exp(� 2�i x � � ) = exp( � 2�i (a� 1 + b�2)) exp(� 2�it k� k) :

The factor exp(� 2�i (a� 1 + b�2)) doesn't depend ont and the factor exp(� 2�it k� k) is periodic with period
1=k� k, the spacing between the lines of zero phase. Now, if� 1 or � 2 is large, then the spacing of the lines is
close and, by the same token, if� 1 and � 2 are small then the lines are far apart. Thus although \frequency"
is now a vector quantity we still tend to speak in terms of a \high frequency" harmonic, when the lines
of zero phase are spaced close together and a \low frequency"harmonic when the lines of zero phase are
spaced far apart (\high" and \low" are relatively speaking, of course). Half way between the lines of zero
phase, whent = 1=2k� k, we're on lines where the exponential is� 1, so 180� out of phase with the lines of
zero phase.

One often sees pictures like the following.
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Here's what you're looking at: The function e2�i x �� is complex valued, but consider its real part

Ree2�i x �� = 1
2

�
e2�i x �� + e� 2�i x �� �

= cos 2�i x � � = cos 2� (� 1x1 + � 2x2)

which has the same periodicity and same lines of zero phase asthe complex exponential. Put down white
stripes where cos 2� (� 1x1 + � 2x2) � 0 and black stripes where cos 2� (� 1x1 + � 2x2) < 0, or, if you want to
get fancy, use a gray scale to go from pure white on the lines ofzero phase, where the cosine is 1, down to
pure black on the lines 180� out of phase, where the cosine is� 1, and back up again. This gives a sense
of a periodically varying intensity, and the slowness or rapidity of the changes in intensity indicate low or
high spatial frequencies.

The spectrum The Fourier transform of a function f (x1; x2) �nds the spatial frequencies (� 1; � 2). The
set of all spatial frequencies is called thespectrum, just as before. The inverse transform recovers the
function from its spectrum, adding together the corresponding spatial harmonics, each contributing an
amount F f (� 1; � 2). As mentioned above, whenf (x1; x2) is real we have

F f (� � 1; � � 2) = F f (� 1; � 2) ;

so that if a particular F f (� 1; � 2) is not zero then there is also a contribution from the \negative frequency"
(� � 1; � � 2). Thus for a real signal, the spectrum, as a set of points in the (� 1; � 2)-plane, is symmetric about
the origin.2 If we think of the exponentials of corresponding positive and negative frequency vectors adding
up to give the signal then we're adding up (integrating) a bunch of cosines and the signal really does seem
to be made of a bunch of a stripes with di�erent spacings, di�erent orientations, and di�erent intensities

2 N.b.: It's not the values F f (� 1 ; � 2) that are symmetric, just the set of points ( � 1 ; � 2) of contributing frequencies.
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(the magnitudes jF f (� 1; � 2)j). It may be hard to imagine that an image, for example, is sucha sum of
stripes, but, then again, why is music the sum of a bunch of sine curves?

In the one-dimensional case we are used to drawing a picture of the magnitude of the Fourier transform
to get some sense of how the energy is distributed among the di�erent frequencies. We can do a similar
thing in the two-dimensional case, putting a bright (or colored) dot at each point (� 1; � 2) that is in the
spectrum, with a brightness proportional to the magnitude jF f (� 1; � 2)j. This, the energy spectrumor the
power spectrum, is symmetric about the origin becausejF f (� 1; � 2)j = jF f (� � 1; � � 2)j.

Here are pictures of the spatial harmonics we showed before and their respective spectra.

Which is which? The stripes have an orientation (and a spacing) determined by � = ( � 1; � 2) which is normal
to the stripes. The horizontal stripes have a normal of the form (0; � 2) and they are of lower frequency so
� 2 is small. The vertical stripes have a normal of the form (� 1; 0) and are of a higher frequency so� 1 is
large, and the oblique stripes have a normal of the form (�; � ) with a spacing about the same as for the
vertical stripes

Here's a more interesting example.3

For the picture of the woman, what is the function we are taking the Fourier transform of ? The function
f (x1; x2) is the intensity of light at each point ( x1; x2) | that's what a black-and-white image is for the
purposes of Fourier analysis. Incidentally, because the dynamic range (the range of intensities) can be so
large in images it's common to light up the pixels in the spectral picture according to the logarithm of the
intensity.

Here's a natural application of �ltering in the frequency do main for an image.

The �rst picture shows periodic noise that appears quite distinctly in the frequency spectrum. We eliminate
those frequencies and take the inverse transform to show theplane more clearly.4

Finally, there are reasons toadd things to the spectrum as well as take them away. An important and
relatively new application of the Fourier transform in imaging is digital watermarking. Watermarking is an
old technique to authenticate printed documents. Within th e paper an image is imprinted (somehow | I
don't know how this is done!) that only becomes visible if held up to a light or dampened by water. The

3 I showed this picture to the class a few years ago and someone yelled : \That's Natalie!"
4 All of these examples are taken from the book Digital Image Processing by G. Baxes.
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idea is that someone trying to counterfeit the document will not know of or cannot replicate the watermark,
but that someone who knows where to look can easily verify itsexistence and hence the authenticity of the
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document. The newer US currency now uses watermarks, as wellas other anticounterfeiting techniques.

For electronic documents adigital watermark is added by adding to the spectrum. Insert a few extra
harmonics here and there and keep track of what you added. This is done in a way to make the changes in
the image undetectable (you hope) and so that no one else could possibly tell what belongs in the spectrum
and what you put there (you hope). If the receivers of the document know where to look in the spectrum
they can �nd your mark and verify that the document is legitim ate.

Higher dimensions In higher dimensions the words to describe the harmonics andthe spectrum are
pretty much the same, though we can't draw the pictures5. The harmonics are the complex exponentials
e� 2�i x �� and we haven spatial frequencies,� = ( � 1; � 2; : : : ; � n ). Again we single out where the complex
exponentials are equal to 1 (zero phase), which is when� � x is an integer. In three-dimensions a given
(� 1; � 2; � 3) de�nes a family � � x = integer of parallel planes (of zero phase) in (x1; x2; x3)-space. The
normal to any of the planes is the vector� = ( � 1; � 2; � 3) and adjacent planes are a distance 1=k� k apart.
The exponential is periodic in the direction � with period 1=k� k. In a similar fashion, in n dimensions
we have families of parallel hyperplanes ((n � 1)-dimensional \planes") with normals � = ( � 1; : : : ; � n ), and
distance 1=k� k apart.

8.1.2 Finding a few Fourier transforms: separable function s

There are times when a functionf (x1; : : : ; xn ) of n variables can be written as a product ofn functions of
one-variable, as in

f (x1; : : : ; xn ) = f 1(x1)f 2(x2) � � � f n(xn ) :

Attempting to do this is a standard technique in �nding speci al solutions of partial di�erential equations
| there it's called the method of separation of variables. When a function can be factored in this way, its
Fourier transform can be calculated as the product of the Fourier transform of the factors. Take n = 2 as
a representative case:

F f (� 1; � 2) =
Z

R n
e� 2�i x �� f (x ) dx

=
Z 1

�1

Z 1

�1
e� 2�i (x1 � 1+ x2 � 2) f (x1; x2) dx1 dx2

=
Z 1

�1

Z 1

�1
e� 2�i� 1x1 e� 2�i� 2x2 f 1(x1)f 2(x2) dx1 dx2

=
Z 1

�1

� Z 1

�1
e� 2�i� 1x1 f 1(x) dx1

�
e� 2�i� 2x2 f 2(x2) dx2

= F f 1(� 1)
Z 1

�1
e� 2�i� 2x2 f 2(x2) dx2

= F f 1(� 1) F f 2(� 2)

In general, if f (x1; x2; : : : ; xn ) = f 1(x1)f 2(x2) � � � f n (xn ) then

F f (� 1; x2; : : : � n ) = F f 1(� 1)F f 2(� 2) � � � F f n(� n ) :

If you really want to impress your friends and confound your enemies, you can invoketensor products in
this context. In mathematical parlance the separable signal f is the tensor product of the functions f i and

5 Any computer graphics experts out there care to add color and 3D-rendering to try to draw the spectrum?
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one writes
f = f 1 
 f 2 
 � � � 
 f n ;

and the formula for the Fourier transform as

F (f 1 
 f 2 
 � � � 
 f n ) = F f 1 
 F f 2 
 � � � 
 F f n :

People run in terror from the 
 symbol. Cool.

Higher dimensional rect functions The simplest, useful example of a function that �ts this description
is a version of the rect function in higher dimensions. In twodimensions, for example, we want the function
that has the value 1 on the square of side length 1 centered at the origin, and has the value 0 outside this
square. That is,

�( x1; x2) =

(
1 � 1

2 < x 1 < 1
2 ; � 1

2 < x 2 < 1
2

0 otherwise

You can �ght it out how you want to de�ne things on the edges. Here's a graph.

We can factor �( x1; x2) as the product of two one-dimensional rect functions:

�( x1; x2) = �( x1)�( x2) :

(I'm using the same notation for the rect function in one or more dimensions because, in this case, there's
little chance of confusion.) The reason that we can write �( x1; x2) this way is because it is identically
1 if all the coordinates are between� 1=2 and 1=2 and it is zero otherwise | so it's zero if any of the
coordinates is outside this range. That's exactly what happens for the product �( x1)�( x2).
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For the Fourier transform of the 2-dimensional � we then have

F �( � 1; � 2) = sinc � 1 sinc� 2 :

Here's what the graph looks like.

A helpful feature of factoring the rect function this way is t he ability, easily, to change the widths in the
di�erent coordinate directions. For example, the function which is 1 in the rectangle � a1=2 < x 1 < a 1=2,
� a2=2 < x 2 < a 2=2 and zero outside that rectangle is (in appropriate notation)

� a1 a2 (x1; x2) = � a1 (x1)� a2 (x2) :

The Fourier transform of this is

F � a1a2 (� 1; � 2) = ( a1 sinca1� 1)(a2 sinca2� 2) :

Here's a plot of (2 sinc 2� 1)(4 sinc 4� 2). You can see how the shape has changed from what we had before.
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The direct generalization of the (basic) rect function to n dimensions is

�( x1; x2; : : : ; xn ) =

(
1 � 1

2 < x k < 1
2 ; k = 1 ; : : : ; n

0 otherwise

which factors as
�( x1; x2; : : : ; xn ) = �( x1)�( x2) � � � �( xn ) :

For the Fourier transform of the n-dimensional � we then have

F �( � 1; � 2; : : : ; � n ) = sinc � 1 sinc� 2 � � � sinc� n :

It's obvious how to modify higher-dimensional � to have di�e rent widths on di�erent axes.

Gaussians Another good example of a separable function | one that often comes up in practice | is
a Gaussian. By analogy to the one-dimensional case, the mostnatural Gaussian to use in connection with
Fourier transforms is

g(x) = e� � jx j2 = e� � (x2
1+ x2

2+ ���+ x2
n ) :

This factors as a product of n one-variable Gaussians:

g(x1; : : : ; xn ) = e� � (x2
1+ x2

2+ ���+ x2
n ) = e� �x 2

1 e� �x 2
2 � � � e� �x 2

n = h(x1)h(x2) � � � h(xn ) ;

where
h(xk ) = e� �x 2

k :

Taking the Fourier transform and applying the one-dimensional result (and reversing the algebra that we
did above) gets us

F g(� ) = e� �� 2
1 e� �� 2

2 � � � e� �� 2
n = e� � (� 2

1 + � 2
2 + ���+ � 2

n ) = e� � j � j2 :
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As for one dimension, we see thatg is its own Fourier transform.

Here's a plot of the two-dimensional Gaussian.

8.2 Getting to Know Your Higher Dimensional Fourier Transfo rm

You already know a lot about the higher dimensional Fourier transform because you already know a lot
about the one-dimensional Fourier transform | that's the wh ole point. Still, it's useful to collect a few of
the basic facts. If some result corresponding to the one-dimensional case isn't mentioned here, that doesn't
mean it doesn't hold, or isn't worth mentioning | it only mean s that the following is a very quick and
very partial survey. Sometimes we'll work in R n , for any n, and sometimes just inR 2; nothing should be
read into this for or against n = 2.

8.2.1 Linearity

Linearity is obvious:
F (�f + �g )( � ) = � F f (� ) + � F g(� ) :

8.2.2 Shifts

In one dimension a shift in time corresponds to a phase changein frequency. The statement of this is the
shift theorem:

� If f (x) 
 F (s) then f (x � b) 
 e� 2�isb F (s).

It looks a little slicker (to me) if we use the delay operator (� bf )(x) = f (x � b), for then we can write

F (� bf )(s) = e� 2�isb F f (s) :
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(Remember, � b involves � b.) Each to their own taste.

The shift theorem in higher dimensions can be made to look just like it does in the one-dimensional
case. Suppose that a pointx = ( x1; x2; : : : ; xn ) is shifted by a displacement b = ( b1; b2; : : : ; bn ) to
x + b = ( x1 + b1; x2 + b2; : : : ; xn + bn ). Then the e�ect on the Fourier transform is:

� The Shift Theorem If f (x ) 
 F (� ) then f (x � b ) 
 e� 2�i b �� F (� ).

Vectors replace scalars and the dot product replaces multiplication, but the formulas look much the same.

Again we can introduce the delay operator, this time \delaying" by a vector:

� b f (x ) = f (x � b ) ;

and the shift theorem then takes the form

F (� b f )( � ) = e� 2�i b �� F f (� ) :

(Remember, � b involves a � b .) Each to their own taste, again.

If you're more comfortable writing things out in coordinate s, the result, in two dimensions, would read:

F f (x1 � b1; x2 � b2) = e2�i (� � 1 b1 � � 2b2 )F f (� 1; � 2) :

The only advantage in writing it out this way (and you certain ly wouldn't do so for any dimension higher
than two) is a more visible reminder that in shifting ( x1; x2) to ( x1 � b1; x2 � b2) we shift the variables
independently, so to speak. This independence is also (more) visible in the Fourier transform if we break
up the dot product and multiply the exponentials:

F f (x1 � b1; x2 � b2) = e� 2�i� 1b1 e� 2�i� 2b2 F f (� 1; � 2) :

The derivation of the shift theorem is pretty much as in the one-dimensional case, but let me show you
how the change of variable works. We'll do this forn = 2, and, yes, we'll write it out in coordinates. Let's
just take the case when we're addingb1 and b2. First o�

F (f (x1 + b2; x2 + b2)) =
Z 1

�1

Z 1

�1
e� 2�i (x1 � 1+ x2 � 2 ) f (x1 + b1; x2 + b2) dx1 dx2

We want to make a change of variable, turningf (x1+ b1; x2+ b2) into f (u; v) by the substitutions u = x1+ b1

and v = x2 + b2 (or equivalently x1 = u � b1 and x2 = v � b2). You have two choices at this point. The
general change of variables formula for a multiple integral(stay with it for just a moment) immediately
produces.

Z 1

�1

Z 1

�1
e� 2�i (x1 � 1+ x2 � 2 ) f (x1 + b1; x2 + b2) dx1 dx2

=
Z 1

�1

Z 1

�1
e� 2�i (( u� b1 )� 1+( v� b2 )� 2 ) f (u; v) du dv

=
Z 1

�1

Z 1

�1
e2�ib 1 � 1 e2�ib 2 � 2 e� 2�i (u� 2 + v� 2 ) f (u; v) du dv

= e2�i (b1 � 1+ b2 � 2)
Z 1

�1

Z 1

�1
e� 2�i (u� 2+ v� 2 ) f (u; v) du dv

= e2�i (b1 � 1+ b2 � 2)F f (� 1; � 2) ;
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and there's our formula.

If you know the general change of variables formula then the shift formula and its derivation really are just
like the one-dimensional case, but this doesn't do you much good if you don't know the change of variables
formula for a multiple integral. So, for completeness, let me show you an alternative derivation that works
because the change of variablesu = x1 + b1, v = x2 + b2 changesx1 and x2 separately.

F f (x1 + b2; x2 + b2) =
Z 1

�1

Z 1

�1
e� 2�i (x1 � 1+ x2 � 2) f (x1 + b1; x2 + b2) dx1 dx2

=
Z 1

�1
e2�ix 1 � 1

� Z 1

�1
e2�ix 2 � 2 f (x1 + b1; x2 + b2) dx2

�
dx1

=
Z 1

�1
e2�ix 1 � 1

� Z 1

�1
e� 2�i (v� b2 )� 2 f (x1 + b1; v) dv

�
dx1

(substituting v = x2 + b2)

= e2�ib 2 � 2

Z 1

�1
e� 2�ix 1 � 1

� Z 1

�1
e� 2�iv� 2 f (x1 + b1; v) dv

�
dx1

= e2�ib 2 � 2

Z 1

�1
e� 2�iv� 2

� Z 1

�1
e� 2�ix 1 � 1 f (x1 + b1; v) dx1

�
dv

= e2�ib 2 � 2

Z 1

�1
e� 2�iv� 2

� Z 1

�1
e� 2�i (u� b1 )� 1 f (u; v) du

�
dv

(substituting u = x1 + b1)

= e2�ib 2 � 2 e2�ib 1 � 1

Z 1

�1
e� 2�iv� 2

� Z 1

�1
e� 2�iu� 1 f (u; v) du

�
dv

= e2�ib 2 � 2 e2�ib 1 � 1

Z 1

�1

Z 1

�1
e� 2�i (u� 1+ v� 2 ) f (u; v) du dv

= e2�ib 2 � 2 e2�ib 1 � 1 F f (� 1; � 2)

= e2�i (b2 � 2+ b1 � 1 ) F f (� 1; � 2) :

And there's our formula, again.

The good news is, we've certainly derived the shift theorem!The bad news is, you may be saying to yourself:
\This is not what I had in mind when you said the higher dimensional case is just like the one-dimensional
case." I don't have a quick comeback to that, except that I'm trying to make honest statements about the
similarities and the di�erences in the two cases and, if you want, you can assimilate the formulas and just
skip those derivations in the higher dimensional case that bug your sense of simplicity. I will too, mostly.

8.2.3 Stretches

There's really only one stretch theorem in higher dimensions, but I'd like to give two versions of it. The
�rst version can be derived in a manner similar to what we did for the shift theorem, making separate
changes of variable. This case comes up often enough that it's worth giving it its own moment in the
sun. The second version (which includes the �rst) needs the general change of variables formula for the
derivation.

� Stretch Theorem, �rst version

F (f (a1x1; a2x2)) =
1

ja1j ja2j
F (f )

�
� 1

a1
;

� 2

a2

�
:
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There is an analogous statement in higher dimensions.

I'll skip the derivation.

The reason that there's a second version of the stretch theorem is because there's something new that
can be done by way of transformations in higher dimensions that doesn't come up in the one-dimensional
setting. We can look at a linear change of variablesin the spatial domain. In two dimensions we write
this as �

u1

u2

�
=

�
a b
c d

� �
x1

x2

�

or, written out,

u1 = ax1 + bx2

u2 = cx1 + dx2

The simple, \independent" stretch is the special case
�

u1

u2

�
=

�
a1 0
0 a2

� �
x1

x2

�
:

For a general linear transformation the coordinates can getmixed up together instead of simply changing
independently.

A linear change of coordinates is not at all an odd a thing to do| think of linearly distorting an image,
for whatever reason. Think also of rotation, which we'll consider below. Finally, a linear transformation as
a linear change of coordinates isn't much good if you can't change the coordinates back. Thus it's natural
to work only with invertible transformations here, i.e., th ose for which detA 6= 0.

The general stretch theorem answers the question of what happens to the spectrum when the spatial
coordinates change linearly | what is F (f (u1; u2)) = F (f (ax1 + bx2; cx1 + dx2))? The nice answer is
most compactly expressed in matrix notation, in fact just as easily for n dimensions as for two. LetA be
an n � n invertible matrix. We introduce the notation

A � T = ( A � 1)T ;

the transpose of the inverse ofA. You can check that alsoA � T = ( AT )� 1, i.e., A � T can be de�ned either
as the transpose of the inverse or as the inverse of the transpose. (A � T will also come up naturally when
we apply the Fourier transform to lattices and \reciprocal l attices", i.e., to crystals.)

We can now state:

� Stretch Theorem, general version

F (f (Ax )) =
1

j det Aj
F f (A � T � ) :

There's another way of writing this that you might prefer, de pending (as always) on your tastes. Using
det AT = det A and detA � 1 = 1=det A we have

1
j det Aj

= j det A � T j

so the formula reads
F (f (Ax )) = j det A � T j F f (A � T � ) :
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Finally, I'm of a mind to introduce the general scaling operator de�ned by

(� A f )( x ) = f (Ax ) ;

where A is an invertible n � n matrix. Then I'm of a mind to write

F (� A f )( � ) =
1

j det Aj
F f (A � T � ) :

Your choice. I'll give a derivation of the general stretch theorem in Section??.

Let's look at the two-dimensional case in a little more detail. To recover the �rst version of the stretch
theorem we apply the general version to the diagonal matrix

A =
�

a1 0
0 a2

�
with det A = a1a2 6= 0 :

Then

A � 1 =
�

1=a1 0
0 1=a2

�
) A � T =

�
1=a1 0

0 1=a2

�
:

This gives

F (f (a1x1; a2x2)) = F (f (Ax )) =
1

j det Aj
F f (A � T � ) =

1
ja1j ja2j

F f
�

� 1

a1
;

� 2

a2

�
:

Works like a charm.

An important special case of the stretch theorem is whenA is a rotation matrix:

A =
�

cos� � sin �
sin � cos�

�

A rotation matrix is orthogonal, meaning that AA T = I :

AA T =
�

cos� � sin �
sin � cos�

� �
cos� sin �

� sin � cos�

�
=

�
cos2 � + sin 2 � 0

0 cos2 � + sin 2 �

�
=

�
1 0
0 1

�
:

Thus A � 1 = AT so that
A � T = ( A � 1)T = ( AT )T = A :

Also
det A = cos2 � + sin 2 � = 1 :

The consequence of all of this for the Fourier transform is that if A is a rotation matrix then

F (f (Ax )) = F f (A� ); :

In words:

� A rotation in the spatial domain corresponds to an identical rotation in the frequency domain.

This result is used all the time in imaging problems.

Finally, it's worth knowing that for a 2 � 2 matrix we can write down A � T explicitly:
�

a b
c d

� � 1

=
1

det A

�
d � b

� c a

�
so the transpose of this is

�
a b
c d

� � T

=
1

det A

�
d � c

� b a

�

This jibes with what we found for a rotation matrix.
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The indicator function for a parallelogram As an exercise in using the stretch theorem you can
show the following. Consider a parallelogram centered at (0; 0):

One set of data that describes the parallelogram are the distances between sides,p and q, and the vectors
that give the directions of the sides. Let u be a unit vector in the direction of the sides that are p apart
and let v be a unit vector in the direction of the sides that are q apart.

The indicator function P for the parallelogram is the function that is equal to 1 on the parallelogram and
equal to 0 outside the parallelogram. The Fourier transformof P can be shown to be

F P(� ) =
pq

j sin � j
sinc

�
p(u � � )

sin �

�
sinc

�
q(v � � )

sin �

�
:

Shift and stretch As an example of using the general formula, let's combine a shift with a stretch and
show:

F (f (Ax + b)) = exp(2 �i b � A � T � )
1

j det Aj
F f (A � T � )

(I think the exponential is a little crowded to write it as e to a power here.) Combining shifts and stretches
seems to cause a lot of problems for people (even in one dimension), so let me do this in several ways.

As a �rst approach, and to keep the operations straight, write

g(x ) = f (x + b) ;
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and then
f (Ax + b) = g(Ax ) :

Using the stretch theorem �rst,

F (g(Ax )) =
1

j det Aj
F g(A � T � )

Applying the shift theorem next gives

(F g)(A � T � ) = exp(2 �i b � A � T � )F f ((A � T � ) :

Putting these together gives the �nal formula for F (f (Ax + b)).

Another way around is instead to write
g(x ) = f (Ax )

and then
f (Ax + b) = f (A(x + A � 1b)) = g(x + A � 1b) :

Now use the shift theorem �rst to get

F (g(x + A � 1b )) = exp(2 �iA � 1b � � ) (F g)( � ) = exp(2 �i b � A � T � ) (F g)( � ) :

The stretch theorem comes next and it produces

F g(� ) = F (f (Ax )) =
1

j det Aj
F f (A � T � ) :

This agrees with what we had before, as if there was any doubt.

Finally, by popular demand, I do this one more time by expressing f (Ax + b ) using the delay and scaling
operators. It's a question of which comes �rst, and parallel to the �rst derivation above we can write:

f (Ax + b ) = � A (� � b f )( x ) = ( � A � � b f )( x ) ;

which we verify by
(� A � � b f )( x ) = ( � � b f )(Ax ) = f (Ax + b) :

And now we have

F (� A (� � b f ))( � ) =
1

j det Aj
F (� � b f )(A � T � ) =

1
j det Aj

exp(2�iA � T � � b )F f (A � T � ) :

I won't give a second version of the second derivation.

8.2.4 Convolution

What about convolution? For two real-valued functions f and g on R n the de�nition is

(f � g)(x) =
Z

R n
f (x � y )g(y) dy :

Written out in coordinates this looks much more complicated. For n = 2, for example,

(f � g)(x1; x2) =
Z 1

�1

Z 1

�1
f (x1 � y1; x2 � y2)g(y1; y2) dy1 dy2 :

The intelligent person would not write out the corresponding coordinatized formula for higher dimensions
unless absolutely pressed. The intelligent person would also not try too hard to 
ip, drag or otherwise
visualize a convolution in higher dimensions. The intelligent person would be happy to learn, however,
that once again

F (f � g)( � ) = F f (� )F g(� ) and F (fg )( � ) = ( F f � F g)( � ) :

The typical interpretations of convolution | smoothing, av eraging, etc. | continue to apply, when applied
by an intelligent person.
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8.2.5 A little � now, more later

We'll see that things get more interesting in higher dimensions for delta functions, but the de�nition of the
plain vanilla � is the same as before. To give the distributional de�nition, I'll pause, just for a moment, to
de�ne what it means for a function of several variables to be aSchwartz function.

Schwartz functions The theory and practice of tempered distributions works the same in higher di-
mensions as it does in one. The basis of the treatment is via the Schwartz functions as the class of test
functions. The condition that a function of several variables be rapidly decreasing is that all partial deriva-
tives (including mixed partial derivatives) decrease faster than any power of any of the coordinates. This
can be stated in any number of equivalent forms. One way is to require that

jx jp j@q' (x)j ! 0 as jx j ! 1 :

I'll explain the funny notation | it's an example of the occas ional awkwardness that sets in when writing
formulas in higher dimensions.p is a positive integer, so that just gives a power ofjx j, and q is amulti-index.
This means that q = ( q1; : : : ; qn ), each qi a positive integer, so that @q is supposed to mean

@q1+ ���+ qn

(@x1)q1 (@x2)q2 � � � (@xn )qn
:

There's no special font used to indicate multi-indices | you just have to intuit it.

From here, the de�nitions of tempered distributions, the Fourier transform of a tempered distribution, and
everything else, goes through just as before. Shall we leaveit alone? I thought so.

� in higher dimensions The � -function is the distribution de�ned by the pairing

h�; ' i = ' (0; : : : ; 0) or h�; ' i = ' (0) in vector notation

where ' (x1; ; : : : ; xn ) is a Schwartz function.6 As is customary, we also write this in terms of integration
as: Z

R n
' (x )� (x ) dx = ' (0)

You can show that � is even as a distribution (once you've reminded yourself what it means for a distribution
to be even).

As before, one has
f (x )� (x ) = f (0)� (x ) ;

when f is a smooth function, and for convolution

(f � � )( x ) = f (x ) :

The shifted delta function � (x � b ) = � (x1 � b1; x2 � b2; ; : : : ; xn � bn ) or � b = � b � , has the corresponding
properties

f (x )� (x � b ) = f (b )� (x � b ) and f � � (x � b ) = f (x � b ) :

In some cases it is useful to know that we can \factor" the delta function into one-dimensional deltas, as
in

� (x1; x2; : : : ; xn ) = � 1(x1)� 2(x2) � � � � n (xn ) :

6 Actually, � is in a larger class than the tempered distributions. It is de �ned by the pairing h�; ' i = ' (0) when ' is any
smooth function of compact support.
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I've put subscripts on the � 's on the right hand side just to tag them with the individual c oordinates
| there are some advantages in doing this. Though it remains t rue, as a general rule, that multiplying
distributions is not (and cannot be) de�ned, this is one casewhere it makes sense. The formula holds
because of how each side acts on a Schwartz function.7 Let's just check this in the two-dimensional case,
and play a little fast and loose by writing the pairing as an integral. Then, on the one hand,

Z

R 2
' (x )� (x ) dx = ' (0; 0)

by de�nition of the 2-dimensional delta function. On the oth er hand,
Z

R 2
' (x1; x2)� 1(x1)� 2(x2) dx1 dx2 =

Z 1

�1

� Z 1

�1
' (x1; x2)� 1(x1) dx1

�
� 2(x2) dx2

=
Z 1

�1
' (0; x2)� 2(x2) dx2 = ' (0; 0):

So � (x1; x2) and � 1(x1)� 2(x2) have the same e�ect when integrated against a test function.

The Fourier transform of � And �nally | the Fourier transform of the delta function is, o f course,
1 (that's the constant function 1). The argument is the same as in the one-dimensional case. By duality,
the Fourier transform of 1 is � . One can then shift to get

� (x � b ) 
 e� 2�i b �� or F � b = e� 2�i b �� :

You can now see (again) where those symmetrically paired dots come from in looking at the spectral
picture for alternating black and white stripes. It comes from the Fourier transforms of cos(2� x � � 0) =
Re exp(2�i x � � 0) for � 0 = ( � 1; 0), � 0 = (0 ; � 2), and � 0 = ( � 3; � 3), since

F cos(2� x � � 0) = 1
2(� (� � � 0) + � (� + � 0)) :

7 The precise way to do this is through the use of tensor products of distributions, something we have not discussed, and will
not.
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Scaling delta functions Recall how a one-dimensional delta function scales:

� (ax) =
1

jaj
� (x) :

Writing a higher dimensional delta function as a product of one-dimensional delta functions we get a
corresponding formula. In two dimensions:

� (a1x1; a2x2) = � 1(a1x1)� 2(a2x2)

=
1

ja1j
� 1(x1)

1
ja2j

� 2(x2)

=
1

ja1j ja2j
� 1(x1)� 2(x2) =

1
ja1a2j

� (x1; x2);

and in n-dimensions
� (a1x1; : : : ; an xn) =

1
ja1 � � � an j

� (x1; : : : ; xn ) :

It's also possible (and useful) to consider� (Ax ) when A is an invertible matrix. The result is

� (Ax ) =
1

j det Aj
� (x ) :

See Section?? for a derivation of this. This formula bears the same relationship to the preceding formula
as the general stretch theorem bears to the �rst version of the stretch theorem.

8.2.6 The Fourier transform of a radial function

For use in many applications, we're going to consider one further aspects of the 2-dimensional case. A
function on R 2 is radial (also called radially symmetric or circularly symmetric ) if it depends only on the
distance from the origin. In polar coordinates the distancefrom the origin is denoted by r , so to say that
a function is radial is to say that it depends only on r (and that it does not depend on � , writing the usual
polar coordinates as (r; � )).

The de�nition of the Fourier transform is set up in Cartesian coordinates, and it's clear that we'll be better
o� writing it in polar coordinates if we work with radial func tions. This is actually not so straightforward,
or, at least, it involves introducing some special functions to write the formulas in a compact way.

We have to convert
Z

R 2
e� 2�i x �� f (x ) dx =

Z 1

�1

Z 1

�1
e� 2�i (x1 � 1+ x2 � 2 ) f (x1; x2) dx1 dx2

to polar coordinates. There are several steps: To say thatf (x ) is a radial function means that it be-
comes f (r ). To describe all of R 2 in the limits of integration, we take r going from 0 to 1 and �
going from 0 to 2� . The area elementdx1 dx2 becomesr dr d� . Finally, the problem is the inner product
x � � = x1� 1+ x2� 2 in the exponential and how to write it in polar coordinates. I f we identify ( x1; x2) = ( r; � )
(varying over the (x1; x2)-plane) and put ( � 1; � 2) = ( �; � ) (�xed in the integral) then

x � � = kx k k� k cos(� � � ) = r� cos(� � � ) :

The Fourier transform of f is thus
Z 1

�1

Z 1

�1
e� 2�i x �� f (x ) dx =

Z 2�

0

Z 1

0
f (r )e� 2�ir� cos(� � � ) r dr d� :
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There's more to be done. First of all, becausee� 2�ir� cos(� � � ) is periodic (in � ) of period 2� , the integral
Z 2�

0
e� 2�ir� cos(� � � ) d�

does not depend on� .8 Consequently,
Z 2�

0
e� 2�ir� cos(� � � ) d� =

Z 2�

0
e� 2�ir� cos� d� :

The next step is to de�ne ourselves out of trouble. We introduce the function

J0(a) =
1

2�

Z 2�

0
e� ia cos� d� :

We give this integral a name, J0(a), because, try as you might, there is no simple closed form expression
for it, so we take the integral as de�ning a new function. It is called the zero order Bessel function of the
�rst kind. Sorry, but Bessel functions, of whatever order and kind, always seem to come up in problems
involving circular symmetry; ask any physicist.

Incorporating J0 into what we've done,
Z 2�

0
e� 2�ir� cos� d� = 2 �J 0(2�r� )

and the Fourier transform of f (r ) is

2�
Z 1

0
f (r )J0(2�r� ) r dr

Let's summarize:

� If f (x ) is a radial function then its Fourier transform is

F (� ) = 2 �
Z 1

0
f (r )J0(2�r� ) rdr

� In words, the important conclusion to take away from this is that the Fourier transform of a radial
function is also radial.

The formula for F (� ) in terms of f (r ) is sometimes called the zero orderHankel transform of f (r ) but,
again, we understand that it is nothing other than the Fourier transform of a radial function.

Circ and Jinc A useful radial function to de�ne, sort of a radially symmetr ic analog of the rectangle
function, is

circ(r ) =

(
1 r < 1

0 r � 1

(And one can argue about the value at the rimr = 1.) Here's the graph.

8 We've applied this general fact implicitly or explicitly on earlier occasions when working with periodic functions, namely if
g is periodic with period 2 � then Z 2�

0
g(� � � ) d� =

Z 2�

0
g(� ) d�

Convince yourself of this; for instance let G(� ) =
R2�

0 g(� � � ) d� and show that G00(� ) � 0. Hence G(� ) is constant, so
G(� ) = G(0).
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For its Fourier transform the limits of integration on r go only from 0 to 1, and so we have simply

F circ(� ) = 2 �
Z 1

0
J0(2�r� ) r dr :

We make a change of variable,u = 2 �r� . Then du = 2 ��dr and the limits of integration go from u = 0
to u = 2 �� . The integral becomes

F circ(� ) =
1

2�� 2

Z 2��

0
uJ0(u) du :

We write the integral this way because, you will now be ecstatic to learn, there is an identity that brings
in the �rst-order Bessel function of the �rst kind. That iden tity goes

Z x

0
uJ0(u) du = xJ 1(x) :

In terms of J1 we can now write

F circ(� ) =
J1(2�� )

�

It is customary to introduce the jinc function, de�ned by

jinc( � ) =
J1(�� )

2�
:

In terms of this,
F circ(� ) = 4 jinc(2 � ) :

The graph of F circ is:
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I could plot this because Bessel functions are so common (really) that they are built into many mathematical
software packages, such as Matlab or Mathematica. If you think the jinc function looks like some kind of
radially symmetric version of the sinc function you'd be right. But it's not obvious just how one goes from
sinc to jinc, and we'll have to pass on this.9

8.2.7 A Derivation of the General Stretch Theorem

The general stretch theorem says that ifA is an invertible n � n matrix then

F (f (Ax )) =
1

j det Aj
F f (A � T � ) :

To derive this let's start with the left hand side:

F (f (Ax )) =
Z

R n
e� 2�i � � x f (Ax ) dx :

Our object is to make a change of variable,u = Ax . For this, we need to use the change of variables
formula for multiple integrals. In the form we need it, we can state:

If A is an invertible n � n matrix and u = Ax then
Z

R n
g(Ax ) j det Aj dx =

Z

R n
g(u ) du :

for an integrable function g.

9 There's a symmetrization process at work involving repeate d convolutions. I have notes on this. . .
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Want to feel good (or at least OK) about this in a familiar sett ing? Take the casen = 1. Then
Z 1

�1
g(ax) jajdx =

Z 1

�1
g(u) du ;

making the substitution u = ax. The transformation u = ax of R scales lengths, and the scaling factor is
a. (du = a dx). That's if a is positive; the absolute value ofa is in there in casea is negative | thus \sense
reversing". In n-dimensions the transformation u = Ax scalesn-dimensional volumes, and the scaling
factor is det A. (du = det A dx .) The absolute value j det Aj is in there because a matrixA with det A > 0
is sense preserving onR n , and it is sense reversing if detA < 0. Thus, in general,

du = j det Aj dx

so the substitution u = Ax leads right to the formula
Z

R n
g(Ax ) j det Aj dx =

Z

R n
g(u ) du :

To apply this to the Fourier transform of f (Ax ) we have
Z

R n
e� 2�i� � x f (Ax ) dx =

Z

R n
e� 2�i� �A � 1(A x ) f (Ax )

1
j det Aj

j det Aj dx

=
1

j det Aj

Z

R n
e� 2�i� �A � 1(A x ) f (Ax ) j det Aj dx (now substitute u = Ax )

=
1

j det Aj

Z

R n
e� 2�i� �A � 1 u f (u ) du

If you think this looks complicated imagine writing it out in coordinates!

Next we use an identity for what happens to the dot product when there's a matrix operating on one of
the vectors, namely, for a matrix B and any vectors � and u ,

� � B u = B T � � u :

We take B = A � 1 and then
� � A � 1u = A � T � � u :

With this:
1

j det Aj

Z

R n
e� 2�i� �A � 1 u f (u ) du =

1
j det Aj

Z

R n
e� 2�iA � T � � u f (u ) du :

But this last integral is exactly F (f )(A � T � ). We have shown that

F (f (Ax )) =
1

j det Aj
F (f )(A � T � ) ;

as desired.

Scaling the delta function The change of variables formula also allows us to derive

� (Ax ) =
1

j det Aj
� (x ) :
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Writing the pairing of � (Ax ) with a test function ' via integration |not strictly legit, but it helps to
organize the calculation |leads to

Z

R n
� (Ax )' (x ) dx =

Z

R n
� (Ax )' (A � 1Ax )

1
j det Aj

j det Aj dx

=
1

j det Aj

Z

R n
� (u )' (A � 1u) du (making the change of variablesu = Ax )

=
1

j det Aj
' (A � 10) (by how the delta function acts)

=
1

j det Aj
' (0) (A � 10 = 0 becauseA � 1 is linear)

Thus � (Ax ) has the same e�ect as
1

j det Aj
� when paired with a test function, so they must be equal.

8.3 Higher Dimensional Fourier Series

It's important to know that most of the ideas and constructio ns for Fourier series carry over directly to
periodic functions in two, three, or higher dimensions. Here we want to give just the basic setup so you
can see that the situation, and even the notation, is very similar to what we've already encountered. After
that we'll look at a fascinating problem where higher dimensional Fourier series are central to the solution,
but in a far from obvious way.

Periodic Functions The de�nition of periodicity for real-valued functions of s everal variables is much
the same as for functions of one variable except that we allowfor di�erent periods in di�erent slots. To
take the two-dimensional case, we say that a functionf (x1; x2) is (p1; p2)-periodic if

f (x1 + p1; x2) = f (x1; x2) and f (x1; x2 + p2) = f (x1; x2)

for all x1 and x2. It follows that
f (x1 + p1; x2 + p2) = f (x1; x2)

and more generally that
f (x1 + n1p1; x2 + n2p2) = f (x1; x2)

for all integers n1; n2.

There's a small but important point associated with the de�n ition of periodicity having to do with prop-
erties of f (x1; x2) \one variable at a time" or \both variables together". The c ondition

f (x1 + n1p1; x2 + n2p2) = f (x1; x2)

for all integers n1; n2 can be taken as the de�nition of periodicity, but the condition f (x1 + p1; x2 + p2) =
f (x1; x2) alone is not the appropriate de�nition. The former implies that f (x1 + p1; x2) = f (x1; x2) and
f (x1; x2 + p2) = f (x1; x2) by taking ( n1; n2) to be (1; 0) and (0; 1), respectively, and this \independent
periodicity" is what we want. The latter condition does not i mply independent periodicity.

For our work now it's enough to assume that the period in each variable is 1, so the condition is

f (x1 + 1 ; x2) = f (x1; x2) and f (x1; x2 + 1) = f (x1; x2) ;
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or
f (x1 + n1; x2 + n2) = f (x1; x2) for all integers n1; n2 :

If we use vector notation and write x for (x1; x2) and (why not) n for the pair ( n1; n2) of integers, then
we can write the condition as

f (x + n ) = f (x ) ;

and, except for the typeface, it looks like the one-dimensional case.

Where is f (x1; x2) de�ned? For a periodic function (of period 1) it is enough to know the function for
x1 2 [0; 1] and x2 2 [0; 1]. We write this as

(x1; x2) 2 [0; 1]2 :

We can thus considerf (x1; x2) to be de�ned on [0; 1]2 and then extended to be de�ned on all ofR 2 via
the periodicity condition.

We can consider periodicity of functions in any dimension. To avoid con
icts with other notation, in this
discussion I'll write the dimension asd rather than n. Let x = ( x1; x2; : : : ; xd) be a vector in R d and let
n = ( n1; n2; : : : ; nd) be an d-tuple of integers. Then f (x ) = f (x1; x2; : : : ; xd) is periodic (of period 1 in
each variable) if

f (x + n) = f (x ) for all n :

In this case we consider the natural domain off (x ) to be [0; 1]d, meaning the set of points (x1; x2; : : : ; xd)
where 0� x j � 1 for eachj = 1 ; 2; : : : ; d.

Complex exponentials, again What are the building blocks for periodic functions in higher dimen-
sions? We simply multiply simple complex exponentials of one variable. Taking again the two-dimensional
case as a model, the function

e2�ix 1 e2�ix 2

is periodic with period 1 in each variable. Note that once we get beyond one dimension it's not so helpful
to think of periodicity \in time" and to force yourself to wri te the variable as t.

In d dimensions the corresponding exponential is

e2�ix 1 e2�ix 2 � � � e2�ix d

You may be tempted to use the usual rules and write this as

e2�ix 1 e2�ix 2 � � � e2�ix d = e2�i (x1 + x2+ ���+ xd ) :

Don't do that yet.

Higher harmonics, Fourier series, et al. Can a periodic function f (x1; x2; : : : ; xd) be expressed as
a Fourier series using multidimensional complex exponentials? The answer is yes and the formulas and
theorems are virtually identical to the one-dimensional case. First of all, the natural setting is L 2([0; 1]d).
This is the space of square integrable functions:

Z

[0;1]d
jf (x )j2 dx < 1
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This is meant as a multiple integral, e.g., in the cased = 2 the condition is
Z 1

0

Z 1

0
jf (x1; x2)j2 dx1 dx2 < 1 :

The inner product of two (complex-valued) functions is

(f; g ) =
Z 1

0

Z 1

0
f (x1; x2)g(x1; x2) dx1 dx2 :

I'm not going to relive the greatest hits of Fourier series inthe higher dimensional setting. The only thing
I want us to know now is what the expansions look like. It's nice | watch. Let's do the two-dimensional
case as an illustration. The general higher harmonic is of the form

e2�in 1x1 e2�in 2x2 ;

where n1 and n2 are integers. We would then imagine writing the Fourier series expansion as
X

n1 ;n2

cn1n2 e2�in 1x1 e2�in 2x2 ;

where the sum is over all integersn1; n2. More on the coe�cients in a minute, but �rst let's �nd a more
attractive way of writing such sums.

Instead of working with the product of separate exponentials, it's now time to combine them and see what
happens:

e2�in 1x1 e2�in 2x2 = e2�i (n1 x1+ n2x2)

= e2�i n � x (dot product in the exponent!)

where we use vector notation and writen = ( n1; n2). The Fourier series expansion then looks like
X

n

cn e2�i n � x :

The dot product in two dimensions has replaced ordinary multiplication in the exponent in one dimen-
sion, but the formula looks the same. The sum has to be understood to be over all points (n1; n2) with
integer coe�cients. We mention that this set of points in R 2 is called the two-dimensionalinteger lattice,
written Z2. Using this notation we would write the sum as

X

n 2 Z 2

cn e2�i n � x :

What are the coe�cients? The argument we gave in one dimension extends easily to two dimensions (and
more) and one �nds that the coe�cients are given by

Z 1

0

Z 1

0
e� 2�in 1x1 e� 2�in 2x2 f (x1; x2) dx1 dx2 =

Z 1

0

Z 1

0
e� 2�i (n1x1+ n2x2 ) f (x1; x2) dx1 dx2

=
Z

[0;1]2
e� 2�i n � x f (x) dx

Thus the Fourier coe�cients f̂ (n ) are de�ned by the integral

f̂ (n ) =
Z

[0;1]2
e� 2�i n � x f (x ) dx
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It should now come as no shock that the Fourier series for a periodic function f (x ) in R d is

X

n

f̂ (n )e2�i n � x ;

where the sum is over all pointsn = ( n1; n2; : : : ; nd) with integer entries. (This set of points is the integer
lattice in R d, written Zd.) The Fourier coe�cients are de�ned to be

f̂ (n ) =
Z

[0;1]d
e� 2�i n � x f (x) dx :

Coming up next is an extremely cool example of higher dimensional Fourier series in action. Later we'll
come back to higher dimensional Fourier series and their application to crystallography.

8.3.1 The eternal recurrence of the same?

For this example we need to make some use of notions from probability, but nothing beyond what we used
in discussing the Central Limit Theorem in Chapter ??. For this excursion, and your safe return, you will
need:

� To remember what \probability" means.

� To know that for independent events the probabilities multi ply, i.e., Prob(A; B ) = Prob( A) Prob(B ),
meaning that the probability of A and B occuring (together) is the product of the separate proba-
bilities of A and B occuring.

� To use expected value, which we earlier called themean.

Though the questions we'll ask may be perfectly natural, youmay �nd the answers surprising.

Ever hear of a \random walk"? It's closely related to \Browni an motion" and can also be described as a
\Markov process". We won't take either of these latter point s of view, but if | or rather, when | you
encounter these ideas in other courses,you have been warned.

Here's the setup for a random walk along a line:

You're at home at the origin at time n = 0 and you take a step, left or right chosen with
equal probability; 
ip a coin; | heads you move right, tails y ou move left. Thus at time n = 1
you're at one of the points +1 or � 1. Again you take a step, left or right, chosen with equal
probability. You're either back home at the origin or at � 2. And so on.

� As you take more and more steps, will you get home (to the origin)?

� With what probability?

We can formulate the same question in two, three, or any number of dimensions. We can also tinker with
the probabilities and assume that steps in some directions are more probable than in others, but we'll stick
with the equally probable case.

9 With apologies to F. Nietzsche
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Random walks, Markov processes, et al. are used everyday by people who study queuing problems, for
example. More recently they have been applied in mathematical �nance. A really interesting treatment is
the book Random Walks and Electrical Networks by P. Doyle and J. L. Snell.

To answer the questions it's necessary to give some precise de�nitions, and that will be helped by �xing
some notation. Think of the space cased = 3 as an example. We'll write the location of a point with
reference to Cartesian coordinates. Start at the origin andstart stepping. Each step is by a unit amount
in one of six possible directions, and the directions are chosen with equal probability, e.g., throw a single
die and have each number correspond to one of six directions.Wherever you go, you get there by adding
to where you are one of the six unit steps

(� 1; 0; 0); (0; � 1; 0); (0; 0; � 1) :

Denote any of these \elementary" steps, or more precisely the random process of choosing any of these
steps, bystep ; to take a step is to choose one of the triples, above, and eachchoice is made with probability
1=6. Since we're interested in walks more than we are individual steps, let's add an index to step and
write step 1 for the choice in taking the �rst step, step 2 for the choice in taking the second step, and so on.
We're also assuming that each step is a new adventure | the choice at the n-th step is made independently
of the previousn � 1 steps. Ind dimensions there are 2d directions each chosen with probability 1=2d, and
step n is de�ned in the same manner.

The processstep n is a discrete random variable. To be precise:

� The domain of step n is the set of all possible walks and the value ofstep n on a particular walk is
the n'th step in that walk.

(Some people would callstep n a random vector since its values ared-tuples.) We're assuming that
distribution of values of step n is uniform (each particular step is taken with probability 1 =2d, in general)
and that the steps are independent. Thus, in the parlance we've used in connection with the Central Limit
Theorem, step 1, step 2, . . . , step n are independent, identically distributed random variables.

� The possible random walks ofn steps are described exactly as

walk n = step 1 + step 2 + � � � + step n ; or, for short, just w n = s1 + s2 + � � � + sn :

I'm using the vector notation for w and s to indicate that the action is in R d.
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Here's a picture in R 3.

After a walk of n steps,n � 1, you are at a lattice point in R d, i.e., a point with integer coordinates. We
now ask two questions:

1. Given a particular lattice point l , what is the probability after n steps that we are at l ?

2. How doeswalk n behave asn ! 1 ?

These famous questions were formulated and answered by G. P�olya in 1921. His brilliant analysis resulted
in the following result.

Theorem In dimensions 1 and 2, with probability 1, the walker visits the origin in�nitely
often; in symbols

Prob(walk n = 0 in�nitely often) = 1 :

In dimensions � 3, with probability 1, the walker escapes to in�nity:

Prob
�

lim
n!1

jwalk n j = 1
�

= 1 :
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One says that a random walk along a line or in the plane isrecurrent and that a random walk in higher
dimensions istransient.

Here's the idea | very cunning and, frankly, rather unmotiva ted, but who can account for genius? For
each x 2 R d consider

� n = e2�i w n � x ;

where, as above,w n is a walk of n steps. For a givenn the possible values ofw n , as a sum of steps
corresponding to di�erent walks, lie among the lattice points, and if w n lands on a lattice point l then
the value of � n for that walk is e2�i l � x . What is the expected value of � n over all walks of n steps? It is
the mean, i.e., the weighted average of the values of �n over the possible (random) walks ofn steps, each
value weighted by the probability of its occurrence. That is,

Expected value of � n =
X

l

Prob(w n = l )e2�i l � x :

This is actually a �nite sum because in n steps we can have reached only a �nite number of lattice points,
or, put another way, Prob( w n = l ) is zero for all but �nitely many lattice points l .

From this expression you can see (�nite) Fourier series coming into the picture, but put that o� for the
moment.10 We can compute this expected value, based on our assumption that steps are equally probable
and independent of each other. First of all, we can write

� n = e2�i w n � x = e2�i ( s1+ s2+ ���+ sn )� x = e2�i s1 � x e2�i s2 � x � � � e2�i sn � x :

So we want to �nd the expected value of the product of exponentials. At this point we could appeal to
a standard result in probability, stating that the expected value of the product of independent random
variables is the product of their expected values. You mightbe able to think about this directly, however:
The expected value ofe2�i s1 � x e2�i s2 � x � � � e2�i sn � x is, as above, the weighted average of the values that the
function assumes, weighted by the probabilities of those values occuring. In this case we'd be summing over
all steps s1; s2; : : : ; sn of the values e2�is 1 � x e2�is 2 � x � � � e2�is n � x weighted by the appropriate probabilities.
But now the fact that the steps are independent means

Prob(s1 = s1; s2 = s2; : : : ; sn = sn ) = Prob( s1 = s1) Prob( s2 = s2) � � � Prob(sn = sn)

(probabilities multiply for independent events)

=
1

(2d)n ;

and then

Expected value of � n = Expected value of e2�is 1 � x e2�is 2 � x � � � e2�is n � x

=
X

s1

X

s2

� � �
X

sn

Prob(s1 = s1; s2 = s2; : : : ; sn = sn )e2�i s 1 � x e2�is 2 � x � � � e2�is n � x

=
X

s1

X

s2

� � �
X

sn

1
(2d)n e2�i s 1 � x e2�i s 2 � x � � � e2�i s n � x :

10 Also, though it's not in the standard form, i.e., a power seri es, I think of P�olya's idea here as writing down a generating
function for the sequence of probabilities Prob(w n = l ). For an appreciation of this kind of approach to a great vari ety of
problems | pure and applied | see the book Generatingfunctionology by H. Wilf. The �rst sentence of Chapter One reads:
\A generating function is a clothesline on which we hang up a s equence of numbers for display." Seems pretty apt for the
problem at hand.
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The sums go over all possible choices ofs1, s2,. . . ,sn . Now, these sums are \uncoupled", and so the nested
sum is the product of X

s1

1
2d

e2�i s 1 � x
X

s2

1
2d

e2�i s 2 � x � � �
X

sn

1
2d

e2�i s n � x :

But the sums are, respectively, the expected values ofe2�is j � x , j = 1 ; : : : ; n, and these expected values are
all the same. (The steps are independent and identically distributed). So all the sums are equal, say, to
the �rst sum, and we may write

Expected value of � n =
� 1

2d

X

s1

e2�i s 1 � x
� n

A further simpli�cation is possible. The �rst step s1, as ad-tuple has exactly one slot with a � 1 and the
rest 0's. Summing over these 2d possibilities allows us to combine \positive and negative terms". Check
the cased = 2, for which the choices of s1 are

(1; 0) ; (� 1; 0) ; (0; 1) ; (0; � 1) :

This leads to a sum with four terms:
X

s1

1
2 � 2

e2�i s 1 � x =
X

s1

1
2 � 2

e2�i s 1 �(x1 ;x2)

= 1
2( 1

2e2�ix 1 + 1
2e� 2�ix 1 + 1

2e2�ix 2 + 1
2e� 2�ix 2 )

= 1
2(cos 2�x 1 + cos 2�x 2)

The same thing happens in dimensiond, and our �nal formula is

X

l

Prob(w n = l )e2�i l � x =
� 1

d
(cos 2�x 1 + cos 2�x 2 + � � � + cos 2�x d)

� n
:

Let us write
� d(x ) =

1
d

(cos 2�x 1 + cos 2�x 2 + � � � + cos 2�x d) :

Observe that j� d(x )j � 1, since� d(x ) is the sum of d cosines byd and j cos 2�x j j � 1 for j = 1 ; 2; : : : ; d.

This has been quite impressive already. But there's more! Let's get back to Fourier series and consider the
sum of probabilities times exponentials, above,as a function of x ; i.e., let

f (x ) =
X

l

Prob(w n = l ) e2�i l � x :

This is a (�nite) Fourier series for f (x ) and as such the coe�cients must be the Fourier coe�cients,

Prob(w n = l ) = f̂ ( l ) :

But according to our calculation, f (x ) = � d(x )n , and so this must also be the Fourier coe�cient of � d(x )n ,
that is,

Prob(w n = l ) = f̂ ( l ) = \(� d)n ( l ) =
Z

[0;1]d
e� 2�i l � x � d(x )n dx :

In particular, the probability that the walker visits the or igin, l = 0, in n steps is

Prob(w n = 0) =
Z

[0;1]d
� d(x )n dx :
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Then the expected number of times the walker visits the origin for a random walk of in�nite length is
1X

n=0

Prob(w n = 0) ;

and we can �gure this out.11 Here's how we do this. We'd like to say that
1X

n=0

Prob(w n = 0) =
1X

n=0

Z

[0;1]d
� d(x )n dx

=
Z

[0;1]d

 
1X

n=0

� d(x)n

!

dx =
Z

[0;1]d

1
1 � � d(x )

dx

using the formula for adding a geometric series. The �nal answer is correct, but the derivation isn't quite
legitimate: The formula for the sum of a geometric series is

1X

n=0

r n =
1

1 � r

provided that jr j is strictly less than 1. In our application we know only that j� d(x )j � 1. To get around
this di�culty, let � < 1, and write

1X

n=0

Prob(w n = 0) = lim
� ! 1

1X

n=0

� n Prob(w n = 0) = lim
� ! 1

Z

[0;1]d

� 1X

n=0

� n � d(x)n
�

dx

= lim
� ! 1

Z

[0;1]d

1
1 � �� d(x )

dx =
Z

[0;1]d

1
1 � � d(x )

dx

(Pulling the limit inside the integral is justi�ed by conver gence theorems in the theory of Lebesgue inte-
gration, speci�cally, dominated convergence. Not to worry.)

� The crucial question now concerns the integral
Z

[0;1]d

1
1 � � d(x )

dx :

Is it �nite or in�nite?

This depends on the dimension| and this is exactly where the dimension d enters the picture.

Using some calculus (think Taylor series) it is not di�cult t o show (I won't) that if jx j is small then

1 � � d(x ) � cjx j2 ;

for a constant c. Thus
1

1 � � d(x )
�

1
cjx j2

;

and the convergence of the integral we're interested in depends on that of the \power integral"
Z

x small

1
jx j2

dx in dimension d :

It is an important mathematical fact of nature (something yo u should �le away for future use) that

11 For those more steeped in probability, here's a further argu ment why this sum is the expected number of visits to the
origin. Let Vn be the random variable which is 1 if the walker returns to the o rigin in n steps and is zero otherwise. The
expected value of Vn is then Prob( w n = 0) � 1, the value of the function, 1, times the probability of that value occurring.
Now set V =

P 1
n =0 Vn . The expected value of V is what we want and it is the sum of the expected values of the Vn , i.e.P 1

n =0 Prob( w n = 0).
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� The power integral diverges ford = 1 ; 2.

� The power integral converges ford � 3

Let me illustrate why this is so for d = 1 ; 2; 3. For d = 1 we have an ordinary improper integral,
Z a

0

dx
x2 ; for some smalla > 0;

and this diverges by direct integration. For d = 2 we have a double integral, and to check its properties
we introduce polar coordinates (r; � ) and write

Z

j x j small

dx1 dx2

x2
1 + x2

2
=

Z 2�

0

Z a

0

r dr d�
r 2 =

Z 2�

0

� Z a

0

dr
r

�
d� :

The inner integral diverges. In three dimensions we introduce spherical coordinates (�; �; ' ), and something
di�erent happens. The integral becomes

Z

j x j small

dx1 dx2 dx3

x2
1 + x2

2 + x2
3

=
Z �

0

Z 2�

0

Z a

0

� 2 sin � d� d� d'
� 2 :

This time the � 2 in the denominator cancels with the � 2 in the numerator and the � -integral is �nite . The
same phenomenon persists in higher dimensions, for the samereason (introducing higher dimensional polar
coordinates).

Let's take stock. We have shown that

Expected number of visits to the origin =
1X

n=0

Prob(w n = 0) =
Z

[0;1]d

1
1 � � d(x )

dx

and that this number is in�nite in dimensions 1 and 2 and �nite in dimension 3. From here we can go on
to prove P�olya's theorem as he stated it:

Prob(walk n = 0 in�nitely often) = 1 in dimensions 1 and 2.

Prob(lim n!1 jwalk n j = 1 ) = 1 in dimensions � 3.

For the cased � 3, we know that the expected number of times that the walker visits the origin is �nite.
This can only be true if the actual number of visits to the origin is �nite with probability 1. Now the
origin is not special in any way, so the same must be true of anylattice point. But this means that for
any R > 0 the walker eventually stops visiting the ball jx j � R of radius R with probability 1, and this is
exactly saying that Prob(lim n!1 jwalk n j = 1 ) = 1.

To settle the cased � 2 we formulate a lemma that you might �nd helpful in this discu ssion.12

Lemma Let pn be the probability that a walker visits the origin at least n times and let qn be
the probability that a walker visits the origin exactly n times. Then pn = pn

1 and qn = pn
1 (1� p1)

12 We haven't had many lemmas in this class, but I think I can get a way with one or two.
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To show this we argue as follows. Note �rst that p0 = 1 since the walker starts at the origin. Then

pn+1 = Prob(visit origin at least n + 1 times)

= Prob(visit origin at least n + 1 times given visit at least n times) � Prob(visit at least n times)

= Prob(visit origin at least 1 time given visit at least 0 time s) � pn

(using independence and the de�nition ofpn )

= Prob(visit at least 1 time) � pn

= p1 � pn

From p0 = 1 and pn+1 = p1 � pn it follows (by induction) that pn = pn
1 .

For the second part,

qn = Prob(exactly n visits to origin)

= Prob(visits at least n times) � Prob(visits at least n + 1 times)

= pn � pn+1 = pn
1 (1 � p1)

Now, if p1 were less than 1 then the expected number of visits to the origin would be

1X

n=0

nqn =
1X

n=0

npn
1(1 � p1) = (1 � p1)

1X

n=0

npn
1

= (1 � p1)
p1

(1 � p1)2 (Check that identity by di�erentiating identity
1

1 � x
=

1X

n=0

xn )

=
p1

1 � p1
< 1

But this contradicts the fact we established earlier, namely

Expected visits to the origin =
Z

[0;1]2

1
1 � � 2(x )

dx = 1 :

Thus we must havep1 = 1, that is, the probability of returning to the origin is 1, a nd hencewalk n must
equal 0 in�nitely often with probability 1.

8.4 III, Lattices, Crystals, and Sampling

Our derivation of the sampling formula in Chapter ??? was a direct application and combination of the
important properties of the III function,

III p(t) =
1X

k= �1

� (t � kp) :

Without redoing the whole argument here, short as it is, let me remind you what it is about III that made
things work.
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� � 's being what they are, IIIp is the tool to use for periodizing and for sampling:

(f � III p)( t) =
1X

k= �1

f (t � kp)

f (t)III p(t) =
1X

k= �1

f (kp)� (t � kp) :

� For the Fourier transform,

F III p =
1
p

III 1=p :

� It is through this property of the Fourier transform that per iodizing in one domain corresponds to
sampling in the other domain. Pay particular attention here to the reciprocity in spacing between
III p and its Fourier transform.

The sampling formula itself says that if F f (s) is identically 0 for jsj � p=2 then

f (t) =
1X

k= �1

f
�

k
p

�
sinc(pt � k) :

We now want to see how things stand in two dimensions; there isn't much di�erence in substance between
the two-dimensional case and higher dimensions, so we'll stick pretty much to the plane.

8.4.1 The two-dimensional III

The formula F III p = (1 =p)III 1=p depends crucially on the fact that III p is a sum of impulsesat evenly spaced
points | this is an aspect of periodicity. We've already de�ned a two -dimensional � , so to introduce a
III that goes with it we need to de�ne what \evenly spaced" means for points in R 2. One way of spacing
points evenly in R 2 is to take all pairs (k1; k2), k1, k2 integers. The corresponding III-function is then
de�ned to be

III( x1; x2) =
1X

k1 ;k2= �1

� (x1 � k1; x2 � k2) :

Bracewell, and others, sometimes refer to this as the \bed ofnails".

The points k = ( k1; k2) with integer coordinates are said to form a lattice in the plane. We denote this
particular lattice, called the integer lattice, by Z2; we'll have more general lattices in a short while. As a
model of a physical system, you can think of such an array as a two-dimensional crystal, where there's an
atom at every lattice point.

Since we prefer to write things in terms of vectors, another way to describeZ2 is to use the standard basis
of R 2, the vectors e1 = (1 ; 0), e2 = (0 ; 1), and write the points in the lattice as

k = k1e1 + k2e2 :

We can thus think of the elements of a lattice either as pointsor as vectors, and observe that the sum of
two lattice points is another lattice point and that an integ er multiple of a lattice point is another lattice
point. The III-function can be written

III Z 2 (x ) =
1X

k1 ;k2= �1

� (x � k1e1 � k2e2) =
X

k 2Z 2

� (x � k ) :

It is easy to show that III Z 2 is even.
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Periodicity on Z 2 and F III Z 2 As in the one-dimensional case, IIIZ 2 is the tool to use to work with
periodicity. If we form

�( x ) = ( ' � III Z 2 )( x ) =
X

k 2 Z 2

' (x � k ) ;

assuming that the sum converges, then � is periodic on the lattice Z2, or brie
y, is Z2-periodic. This
means that

�( x + n) = �( x )

for all x and for any lattice point n 2 Z2, and this is true because

�( x + n) =
X

k 2 Z 2

' (x + n � k ) =
X

k 2 Z 2

' (x � k ) = �( x ) ;

the sum (or di�erence) of two lattice points, n � k , is a lattice point, so we're still summing over Z2 and
we get back �.

Using periodicity, and the fact that Z2 is particularly \evenly spaced" as a set of points in R 2 leads to the
important and remarkable formula

F III Z 2 = III Z 2

corresponding precisely to the one-dimensional case. I'llput the details of the derivation of this in Section
??. It's also true that

F � 1III Z 2 = III Z 2

because IIIZ 2 is even.

At this point the most basic version of the two-dimensional sampling formula is already easily within
reach. It's much more interesting, however, as well as ultimately much more useful to allow for some
greater generality.
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8.4.2 Lattices in general

Z2 isn't the only example of a set of evenly spaced points in the plane, though perhaps it's the example
of the most evenly spaced points. It's easy to imagine \oblique" lattices, too. Not all crystals are square,
after all, or even rectangular, and we want to be able to use general lattices to model crystals. We'll now
consider such oblique arrangements, but be warned that the subject of lattices can go on forever; the e�ort
here is to be brief to the point.

We adopt the vector point of view for de�ning a general lattic e. Take any basisu 1, u 2 of R 2 and consider
all the points (or vectors) that are integer linear combinations of the two. These form:

Lattice points = p = p1u 1 + p2u 2; p1; p2 = 0 ; � 1; � 2; : : :

We'll denote such a lattice by L . The sum and di�erence of two lattice points is again a lattice point, as
is any integer times a lattice point.13

The vectors u 1 and u 2 are said to be abasis for the lattice. Other vectors can also serve as a basis, and
two bases for the same lattice are related by a 2� 2 matrix with integer entries having determinant 1. (I
won't go through the derivation of this.) The parallelogram determined by the basis vectors (any basis
vectors) is called afundamental parallelogram for the lattice, or, in crystallographers" terms, a unit cell.
A fundamental parallelogram for Z2 is the square 0� x1 < 1, 0 � x2 < 1.14 By convention, one speaks of
the area of a lattice in terms of the area of a fundamental parallelogram for the lattice, and we'll write

Area(L ) = Area of a fundamental parallelogram :

Two fundamental parallelograms for the same lattice have the same area since the bases are related by a
2 � 2 integer matrix with determinant 1 and the area scales by thedeterminant.

If we take the natural basis vectors e1 = (1 ; 0) and e2 = (0 ; 1) for R 2 we get the integer lattice Z2 as
before. We can see thatany lattice L can beobtained from Z2 via an invertible linear transformation A,
the one that takes e1 and e2 to a basis u 1 = Ae1 and u 2 = Ae2 that de�nes L . This is so precisely
becauseA is linear: if

p = p1u 1 + p2u 2; p1; p2 integers;

is any point in L then
p = p1(Ae1) + p2(Ae2) = A(p1e1 + p2e2) ;

showing that p is the image of a point in Z2. We write

L = A(Z2)

A fundamental parallelogram for L is determined by u 1 and u 2, and so

Area(L ) = Area of the parallelogram determined by u 1 and u 2 = j det Aj :

Here, for example, is the lattice obtained fromZ2 by applying

A =
�

3 � 1
1 2

�

A basis is u 1 = (3 ; 1), u 2 = ( � 1; 2) (Draw the basis on the lattice!) The area of the lattice is 7.

13 In mathematical terminology a lattice is a module over Z; a module is like a vector space except that you can't divide by
the scalars (the integers in this case) only add and multiply them. For a module, as opposed to a vector space, the scalars
form a ring, not a �eld.
14 It's a common convention to de�ne a fundamental parallelogr am to be \half open", including two sides ( x1 = 0 and x2 = 0

in this case) and excluding two ( x1 = 1 and x2 = 1). This won't be an issue for our work.
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8.4.3 III for a lattice

It doesn't take a great leap in imagination to think about int roducing III for a general lattice: If L is a
lattice in R 2 then the III function associated with L is

III L (x ) =
X

p 2L

� (x � p ) :

So there's your general \sum of delta functions at evenly spaced points". We could also write the de�nition
as

III L (x ) =
1X

k1 ;k2= �1

� (x � k1u 1 � k2u 2) :

As L can be obtained fromZ2 via some linear transformation so too can IIIL be expressed in terms of IIIZ 2 .
If L = A(Z2) then

III L (x ) =
X

p 2L

� (x � p ) =
X

k 2 Z 2

� (x � Ak ) :

Next, using the formula for � (Ax ) from earlier in this chapter,

� (x � Ak ) = � (A(A � 1x � k )) =
1

j det Aj
� (A � 1x � k )

Therefore
III L (x ) =

1
j det Aj

III Z 2 (A � 1x ) :

Compare this to our earlier formulas on how the one-dimensional III-function scales: With

III p(x) =
1X

k= �1

� (x � kp)
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and

III( px) =
1X

k= �1

� (px � k)

we found that
III( px) =

1
jpj

III 1=p(x)

Periodizing and sampling Periodizing with III L via convolution results in a function that is periodic
with respect to the lattice. If

�( x ) = ( ' � III L )( x ) =
X

p 2L

' (x � p )

then
�( x + p) = �( x )

for all x 2 R 2 and all p 2 L . Another way of saying this is that � has two \independent" pe riods, one
each in the directions of any pair of basis vectors for the lattice. Thus if u 1, u 2 are a basis forL then

�( x + k1u 1) = �( x ) and �( x + k2u 2) = �( x ); k1; k2 any integers.

III L is also the tool to use for sampling on a lattice, for

(' III L )( x ) =
X

p 2L

' (p )� (x � p ) :

We're almost ready to use this.

Dual lattices and F III L Of the many (additional) interesting things to say about lat tices, the one
that's most important for our concerns is how the Fourier transform of III L depends onL . This question
leads to a fascinating phenomenon, one that is realized physically in x-ray di�raction images of crystals.

We mentioned earlier that for the integer lattice we have

F III Z 2 = III Z 2 :

What about the Fourier transform of III L ? We appeal to the general similarity theorem to obtain, for
L = AZ2,

F III L (� ) =
1

j det Aj
F (III Z 2 (A � 1x ))

=
1

j det Aj
1

j det A � 1j
F III Z 2 (AT � )

(we just get AT on the inside because we're already working withA � 1)

= F III Z 2 (AT � )

= III Z 2 (AT � )

There's a much neater version of this last result, and one of genuine physical importance. But we need a
new idea.
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In crystallography it is common to introduce the reciprocal lattice associated to a given lattice. Given a
lattice L , the reciprocal lattice is the lattice L � consisting of all points (or vectors) q such that

q � p = an integer for every p in the lattice L .

In some other areas of applications, and in mathematics, thereciprocal lattice is known as thedual lattice.
I'll show my heritage and generally use the term dual lattice.

Warning People in crystallography, those in Material Sciences for example, use the reciprocal
lattice all the time and de�ne it this way. However, in some �e lds and for some applications
the reciprocal lattice is normalized di�erently to require that q � p be an integer multiple of 2� .
This alternate normalization is exactly tied up with the alt ernate ways of de�ning the Fourier
transform, i.e., while we usee� 2�i � � x , putting the 2 � in the exponential, others do not put the
2� there and have to put a factor in front of the integral, and so on. I can do no more than to
issue this warning and wish us all luck in sorting out the inconsistencies.

To develop the notion of the dual lattice a little, and to expl ain the terminology \reciprocal", suppose we
get the lattice L from Z2 by applying an invertible matrix A to Z2. We'll show that the reciprocal lattice
L � of L is given by

L � = A � T (Z2) :

There's a maxim lurking here. Use of the Fourier transform always brings up \reciprocal" relations of some
sort, and in higher dimensions more often than not:

� \Reciprocal" means inverse transpose.

Notice, by the way, that ( Z2)� = Z2, sinceA in this case is the identity, i.e., Z2 is \self-dual" as a lattice.
This, coupled with the discussion to follow, is another reason for saying that Z2 wins the award for most
evenly spaced points inR 2.

Here's why L � = A � T (Z2). Supposeq = A � T m for somem = ( m1; m2) in Z2. And suppose also, because
L = A(Z2), that p = Am 0 for some other m 0 = ( m0

1; m0
2) in Z2. Then

q � p = A � T m � Am 0

= m � A � 1(Am 0) (because of how matrices operate with the dot product)

= m � m 0 = m1m0
1 + m2m0

2 (an integer)

We want to draw two conclusions from the result that L � = A � T (Z2). First, we see that

Area(L � ) = j det A � T j =
1

j det Aj
=

1
Area(L )

:

Thus the areas ofL and L � are reciprocals. This is probably the crystallographer's main reason for using
the term reciprocal.

The second conclusion, and the second reason to use the term reciprocal, has to do with bases ofL and of
L � . With L = A(Z2) let

u 1 = Ae1; u 2 = Ae2

be a basis forL . SinceL � = A � T (Z2), the vectors

u �
1 = A � T e1; u �

2 = A � T e2
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are a basis forL � . They have a special property with respect tou 1 and u 2, namely

u i � u �
j = � ij (Kronecker delta) :

This is simple to show, after all we've been through:

u i � u �
j = Aei � A � T ej = ei � AT A � T ej = ei � ej = � ij :

Now, in linear algebra | independent of any connection with l attices | bases f u 1; u 2g and f u �
1; u �

2g of
R 2 are calleddual (or sometimes,reciprocal) if they satisfy

u i � u �
j = � ij (Kronecker delta) :

We can therefore summarize what we've found by saying

� If f u 1; u 2g is a basis for a latticeL and if f u �
1; u �

2g is the dual basis to f u 1; u 2g, then f u �
1; u �

2g is a
basis for the dual lattice L � .

Lots of words here, true, but it's worth your while understanding what we've just done. You're soon to
see it all in action in the sampling formula.

Here's a picture of the dual lattice to the lattice pictured earlier. It's obtained from Z2 by applying

A � T =
�

2=7 � 1=7
1=7 3=7

�
:

As the scales on the axes show, the dual lattice is, in this case, much more \compressed" than the original
lattice. Its area is 1=7.
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Back to the Fourier transform. We showed that if L = A(Z2) then

F III L (� ) = III Z 2 (AT � ) :

We want to call forth the reciprocal lattice. For this,

III Z 2 (AT � ) =
X

n 2 Z 2

� (AT � � n )

=
X

n 2 Z 2

� (AT (� � A � T n ))

=
1

j det AT j

X

n 2 Z 2

� (� � A � T n ) =
1

j det Aj

X

n 2 Z 2

� (� � A � T n) :

But this last expression is exactly a sum over points in the reciprocal lattice L � . We thus have

F (III L )( � ) =
1

j det Aj
III L � (� ) :

Bringing in the areas of fundamental parallelograms forL and L � we can write this either in the form

F (III L )( � ) = Area( L � )III L � (� ) or Area(L )F (III L )( � ) = III L � (� ) :

Interchanging the roles ofL and L � , we likewise have

F (III L � )( � ) = Area( L )III L (� ) or Area(L � )F (III L � )( � ) = III L (� ) :
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Formulas for the inverse Fourier transforms look just like these because the III's are even.

Compare these results to the formula in one dimension,

F III p =
1
p

III 1=p ;

and now you'll see why I said \Pay particular attention here t o the reciprocity in spacing between IIIp and
its Fourier transform" at the beginning of this section.

Higher dimensions Everything in the preceding discussion goes through in higher dimensions with no
signi�cant changes, e.g., \area" becomes \volume". The only reason for statingde�nitions and results in
two-dimensions was to picture the lattices a little more easily. But, certainly, lattices in three dimensions
are common in applications and provide a natural framework for understanding crystals, for example. Let's
do that next.

8.4.4 The Poisson Summation Formula, again, and F III Z2

Back in Chapter 5 we derived the Poisson summation formula: if ' is a Schwartz function then

1X

k= �1

F ' (k) =
1X

k= �1

' (k) :

It's a remarkable identity and it's the basis for showing that

F III = III

for the one-dimensional III. In fact, the Poisson summationformula is equivalent to the Fourier transform
identity.

The situation in higher dimensions is completely analogous. All that we need is a little bit on higher
dimensional Fourier series, which we'll bring in here without fanfare; see the earlier section on \Higher
dimensional Fourier series and random walks" for more background.

Suppose' is a Schwartz function on R 2. We periodize ' to be periodic on the integer lattice Z2 via

�( x ) = ( ' � III Z 2 )( x ) =
X

n 2 Z 2

' (x � n ) :

Then � has a two-dimensional Fourier series

�( x ) =
X

k 2 Z 2

b�( k )e2�i k � x :

Let's see what happens with the Fourier coe�cients.

b�( k1; k2) =
Z 1

0

Z 1

0
e� 2�i (k1 x1+ k2x2 ) �( x1; x2) dx1 dx2

=
Z 1

0

Z 1

0
e� 2�i (k1 x1+ k2x2 )

1X

n1 ;n2= �1

' (x1 � n1; x2 � n2) dx1 dx2

=
1X

n1 ;n2= �1

Z 1

0

Z 1

0
e� 2�i (k1 x1+ k2x2) ' (x1 � n1; x2 � n2) dx1 dx2 :
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Now we make the change of variablesu = x1 � n1, v = x2 � n2. We can either do this \separately" (because
the variables are changing separately) or together using the general change of variables formula.15 Either
way, the result is

1X

n1 ;n2= �1

Z 1

0

Z 1

0
e� 2�i (k1 x1+ k2x2 ) ' (x1 � n1; x2 � n2) dx1 dx2

=
1X

n1 ;n2= �1

Z 1� n1

� n1

Z 1� n2

� n2

e� 2�i (k1 (u+ n1 )+ k2(v+ n2 ) ' (u; v) du dv

=
1X

n1 ;n2= �1

Z 1� n1

� n1

Z 1� n2

� n2

e� 2�i (k1n1+ k2n2)e� 2�i (k1u+ k2v) ' (u; v) du dv

=
1X

n1 ;n2= �1

Z 1� n1

� n1

Z 1� n2

� n2

e� 2�i (k1u+ k2v) ' (u; v) du dv

=
Z 1

�1

Z 1

�1
e� 2�i (k1u+ k2v) ' (u; v) du dv

= F ' (k1; k2) :

We have found, just as we did in one dimension, that the Fourier series for theZ2-periodization of ' is

�( x ) =
X

k 2 Z 2

F ' (k )e2�i k � x :

We now evaluate �( 0) in two ways, plugging x = 0 into its de�nition as the periodization of ' and into
its Fourier series. The result is X

k 2 Z 2

F ' (k ) =
X

k 2 Z 2

' (k ) :

To wrap it all up, here's the derivation of

F III Z 2 = III Z 2

based on the Poisson summation formula. For any Schwartz function  ,

hFIII Z 2 ;  i = hIII Z 2 ; F  i =
X

k 2 Z 2

F  (k ) =
X

k 2 Z 2

 (k ) = hIII Z 2 ;  i :

8.5 Crystals

In a few paragraphs, here's one reason why all this stu� on dual lattices is so interesting. The physical
model for a crystal is a three-dimensional lattice with atoms at the lattice points. An X-ray di�raction
experiment scatters X-rays o� the atoms in the crystal and results in spots on the X-ray �lm, of varying
intensity, also located at lattice points. From this and oth er information the crystallographer attempts to
deduce the structure of the crystal. The �rst thing the cryst allographer has to know is that the lattice of
spots on the �lm arising from di�raction is the dual of the crystal lattice. (In fact, it's more complicated

15 Right here is where the property of Z 2 as the \simplest" lattice comes in. If we were working with an \oblique" lattice we
could not make such a simple change of variables. We would have to make a more general linear change of variables. This
would lead to a more complicated result.
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than that, for it is the projection onto the two-dimensional plane of the �lm of the three-dimensional dual
lattice.)

We can explain this phenomenon | atoms on a lattice, spots on the dual lattice | via the Fourier
transform. What the crystallographer ultimately wants to � nd is the electron density distribution for the
crystal. The mathematical model for crystals puts a delta at each lattice point, one for each atom. If we
describe the electron density distribution of a single atomby a function � (x ) then the electron density
distribution of the crystal with atoms at points of a (three- dimensional) lattice L is

� L (x ) =
X

p 2L

� (x � p ) = ( � � III L )( x ) :

This is now a periodic function with three independent periods, one in the direction of each of the three
basis vectors that determineL . We worked with a one-dimensional version of this in Chapter5.

The basic fact in X-ray crystallography is that the \scatter ed amplitude" of the X-rays di�racting o� the
crystal is proportional to the magnitude of the Fourier tran sform of the electron density distribution. This
data, the results of X-ray di�raction, comes to us directly in the frequency domain. Now, we have

F � L (� ) = F � (� )F III L (� ) = F � (� ) Volume(L � ) III L � (� ) ;

where L � is the dual lattice. Taking this one more step,

F � L (� ) = Volume( L � )
X

q 2L �

F � (q)� (� � q) :

The important conclusion is that the di�raction pattern has peaks at the lattice points of the reciprocal
lattice. The picture is not complete, however. The intensities of the spots are related to the magnitude
of the Fourier transform of the electron density distributi on, but for a description of the crystal it is also
necessary to determine the phases, and this is a hard problem.

Here's a picture of a macroscopic di�raction experiment. On the left is an array of pinholes and on the
right is the di�raction pattern. The spots on the right are at the lattice points of the reciprocal lattice.

The goal of X-ray di�raction experiments is to determine the con�guration of atoms from images of this
type. Making the analysis even harder is that for 3D crystal lattices the images on an X-ray �lm are the
projection onto the image plane of the 3D con�guration. Just how di�cult it may be to infer 3D structure
from 2D projections is illustrated by a famous experiment: \Fun in Reciprocal Space" published in the
distinguished American journal The New Yorker.
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8.6 Bandlimited Functions on R 2 and Sampling on a Lattice

Let's develop the sampling formula in two dimensions. A function f on R 2 is bandlimited if F f is identically
zero outside of some bounded region. We always assume thatf is real valued, and henceF f (� � ) = F f (� ).
Thus, as we've pointed out before, ifF f (� ) 6= 0 then F f (� � ) 6= 0 and so, as a point set inR 2, the spectrum
is symmetric about the origin.

We want to derive a sampling formula associated with a lattice L by following the recipe of �rst periodizing
F f via III L , then cutting o�, and then taking the inverse Fourier transf orm. The result will be a sinc
reconstruction of f from its sampled values | but just where those sampled values are is what's especially
interesting and relevant to what we've just done.

To get the argument started we assume that the support ofF f lies in a parallelogram. This parallelogram
determines a fundamental parallelogram for a latticeL , and the spectrum gets shifted parallel to itself
and o� itself through convolution with III L . This periodization is the �rst step and it's analogous to th e
one-dimensional case when the spectrum lies in an interval,say from � p=2 to p=2, and the spectrum gets
shifted around and o� itself through convolution with III p. Recall that the crucial limitation is that the
spectrum only goes up top=2 and down to � p=2, while III p has � 's spacedp apart. The spacing of the
� 's is big enough to shift the spectrum o� itself and no smaller spacing will do. Correspondingly in two
dimensions, the parallelogram containing the spectrum determines a lattice with \big enough spacing" for
a III based on the lattice to shift the spectrum o� itself.

Using the general stretch theorem, we'll be able to get the general result by �rst deriving a special case,
when the spectrum lies in a square. Suppose, then, thatF f (� ) is identically zero outside the (open) square
j� 1j < 1=2, j� 2j < 1=2. We work with the integer lattice Z2 with basis e1 and e2. The (open) fundamental
parallelogram for Z2 is 0 < � 1 < 1, 0 < � 2 < 1 and the spectrum is inside the center fourth of four copies
of it, as pictured.

Periodizing F f by III Z 2 shifts the spectrum o� itself, and no smaller rectangular lattice will do for this.
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We then cut o� by the two-dimensional rect function �( x1; x2) = �( x1)�( x2) and this gives backF f :

F f (� ) = �( � 1) �( � 2)(F f � III Z 2 )( � ) :

This is just as in the one-dimensional case, and now it's timeto take the inverse Fourier transform. Using
F III Z 2 = III Z 2 , or rather F � 1III Z 2 = III Z 2 , and invoking the convolution theorem we obtain

f (x ) = f (x1; x2) = (sinc x1 sincx2) � (f (x ) � III Z 2 (x ))

= (sinc x1 sincx2) �
�

f (x ) �
1X

k1 ;k2= �1

� (x � k1e1 � k2e2)
�

= (sinc x1 sincx2) �
1X

k1 ;k2= �1

f (k1; k2)� (x1 � k1; x2 � k2)

=
1X

k1 ;k2= �1

f (k1; k2) sinc(x1 � k1) sinc(x2 � k2) :

In solidarity with the general case soon to follow, let's write this \square sampling formula" as

f (x ) =
1X

k1 ;k2= �1

f (k1e1 + k2e2) sinc(x � e1 � k1) sinc(x � e2 � k2) :

Now suppose that the spectrum ofF f lies in the (open) parallelogram, as pictured, with u 1 and u 2 parallel
to the sides and as long as the sides.

Let A be the 2� 2 matrix that takes e1 to u 1 and e2 to u 2, so that A maps the lattice Z2 to the lattice L
with basis u 1 and u 2. Let B = A � T (henceB � T = A) and remember that B takes Z2 to the dual lattice
L � of L . A basis for L � (the dual basis to u 1 and u 2) is

u �
1 = B e1; u �

2 = B e2 :
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Next let
g(x ) = f (B x ) :

According to the general stretch theorem,

F g(� ) =
1

j det B j
F f (B � T � ) = j det Aj F f (A� ) :

The determinant factor out front doesn't matter; what's imp ortant is that the spectrum of g is in the
square � 1=2 < � 1 < 1=2, � 1=2 < � 2 < 1=2, since the corresponding pointsA� lie in the parallelogram
containing the spectrum of f , i.e., F g is identically zero outside the square.

We now apply the square sampling formula tog to write

g(x ) =
1X

k1 ;k2= �1

g(k1e1 + k2e2) sinc(x � e1 � k1) sinc(x � e2 � k2)

With y = B x we can then say

f (y ) =
1X

k1 ;k2= �1

f (B (k1e1 + k2e2)) sinc(B � 1y � e1 � k1) sinc(B � 1y � e2 � k2)

=
1X

k1 ;k2= �1

f (k1B e1 + k2B e2) sinc(AT y � e1 � k1) sinc(AT y � e2 � k2)

=
1X

k1 ;k2= �1

f (k1u �
1 + k2u �

2) sinc(y � Ae1 � k1) sinc(y � Ae2 � k2)

=
1X

k1 ;k2= �1

f (k1u �
1 + k2u �

2) sinc(y � u 1 � k1) sinc(y � u 2 � k2) :

We're done. Changey to x for psychological comfort, and the \lattice sampling formula" says that

f (x ) =
1X

k1 ;k2= �1

f (k1u �
1 + k2u �

2) sinc(x � u 1 � k1) sinc(x � u 2 � k2): (8.1)

This is a sinc reconstruction formula giving the function in terms of sample values on a lattice. But it's
the dual lattice! Here's how to remember the highlights:
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� The spectrum of f lies in a parallelogram, which determines a lattice with basis u 1 and u 2.

� That lattice determines a dual lattice (in the spatial domai n) with dual basis u �
1 and u �

2.

� The sincs use data from the lattice, while the sample points are exactly the points in the dual lattice.

Look back at the one-dimensional sampling formula and tell yourself what you see of this picture.

Exercise What should we mean by \sampling rate" vis �a vis the two-dime nsional lattice sampling for-
mula?

The next topics on this path would be to investigate aliasingand to consider the case of a �nite spectrum
and �nite sampling. Another time, another class.

8.7 Naked to the Bone

Our �nal topic in the course will be a quick development of the use of the Fourier transform in medical
imaging. We'll �nd that the two-dimensional Fourier transf orm is perfectly suited to the problem of
recovering adensity function | a function representing bones, internal organs, the whole lot | from the
projections of that density obtained by passing parallel beams of X-raysthrough a two-dimensional cross
section of the body. (For the discussion of the use of the Fourier transform I'm not making a distinction
between the original methods of tomography using X-rays andthose of magnetic resonance imaging.)

For an account of the history of medical imaging, I recommendthe book Naked to the Bone: Medical
Imaging in the Twentieth Century by Bettyann Kevles, from which I stole the title of this secti on.

Dimmer and dimmer What happens when light passes through murky water? It gets dimmer and
dimmer the farther it goes, of course | this is not a trick ques tion. If the water is the same murkiness
throughout, meaning, for example, uniform density of stu� 
 oating around in it, then it's natural to assume
that the intensity of light decreases by the samepercent amount per length of path traveled. Through
absorption, scattering, etc., whatever intensity comes in, a certain percentage of that intensity goes out;
over a given distance the murky water removes a percentage oflight, and this percentage depends only on
the distance traveled and not on where the starting and stopping points are.16 We're assuming here that
light is traveling in a straight line through the water.

Constant percent change characterizes exponential growth, or decay, so the attenuation of the intensity of
light passing through a homogeneous medium is modeled by

I = I 0e� �x ;

whereI 0 is the initial intensity, x is the distance traveled, and� is a (positive) \murkiness constant". x has
dimension of length and � has dimension 1/length and units \murkiness/length". � is constant because
we assume that the medium is homogeneous. We know the value ofI 0, and one measurement ofx and I
will determine � . In fact, what we do is to put a detector at a known distancex and measure the intensity
when it arrives at the detector.

16 Optical �bers provide an interesting and important study in the progress of making something | glass in this case | less
murky. In the Appendix 8.12 I've attached a graph showing just how dramatic the progress has been.
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Now suppose the water is not uniformly murky, but rather the l ight passes through a number of layers,
each layer of uniform murkiness. If thei 'th layer has murkiness constant � i and is of length � x i , and if
there are n layers, then the intensity of light that reaches the detector can be modeled by

I = I 0 exp
�

�
nX

i =1

� i � x i

�
:

Clearly, if the murkiness is described by a function� (x), then the intensity arriving at the detector is
modeled by

I = I 0 exp
�

�
Z

L
� (x) dx

�
;

where L is the line the light travels along. It's common to call the number

p =
Z

L
� (x) dx = � ln

�
I
I 0

�

the attenuation coe�cient .

Can we recover the density function� (x) from knowledge of the intensity? Not so easily. Certainly not
from a single reading | many arrangements of murkiness along the path could result in the same �nal
intensity at the detector.

If we could vary the detector along the path and record the results then we would be able to determine
� (x). That is, if we could form

p(� ) =
Z �

� 0

� (x) dx ;

as afunction of a variable position � along the line (� 0 is some �xed starting point | the source) then we
could �nd � from p by �nding the derivative p00. The trouble is moving the detector through the murky
water along the path.

Tomography X-rays are light, too, and when they pass through murky stu� ( your body) along a straight
line they are attenuated and reach a detector on the other endat a reduced intensity. We can continue to
assume that the attenuation, the decrease in intensity, is exponentially decreasing with the path length.
The exponential of what? What do the X-rays pass through?

From the start we set this up as a two-dimensional problem. Take a planar slice through your body. The
gunk in this two-dimensional slice | bones, organs, other ti ssue | is of variable density; let's say it's
described by an unknown function � (x1; x2). We consider � (x1; x2) to be zero outside the section of the
body. Take a line L through this slice | in the plane of the slice, the path that an X-ray would follow |
and parameterize the line byx1(s), x2(s), where s is the arclength parameter going froms0 to s1. (The
\arclength parameter" means that we move along the line at unit speed.) Then the density along the line
is � (x1(s); x2(s)) and the attenuation of the X-ray intensity along the line i s

I = I 0 exp
�

�
Z s1

s0

� (x1(s); x2(s)) ds
�

Instead of writing out the parameters and limits, we often write the integral simply as
Z

L
� (x1; x2) ds :

We'll refer to this as a line integral of � along L .
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� The fundamental problem of tomography17 is to determine the function � (x; y) from these line inte-
grals, taken over many lines through the region.

For example | what's inside?

In trying to solve this problem, what's not allowed is to move the detector through the body | that's not
covered by HMO plans. What is allowed is to rotate the source (and the detector) to get X-rays circling
around the two-dimensional cross-section of the body, and what we'll have are families of parallel X-rays.
Before laying all this out, it pays to organize our study of the problem.

8.8 The Radon Transform

For each line L , cutting through the slice, the integral
Z

L
� (x1; x2) ds

is a number. The operation \line determines number" thus de�nes a real-valued function ofL . The whole
subject of tomography is about this function. To work with it e�ectively we need to be able describe the
set of all lines | not the (Cartesian) equation of a given line , but some kind of parametric description for
the collection of lines. This will allow us to write the integral as a function of these parameters.

There are many ways to describe the collection of all lines inthe plane. One that may seem most natural
to you is to use the \slope-intercept" form for the equation of a line; a line can be written asy = mx + b
where m is the slope andb is the y-intercept. A line can thus be associated with a unique pair (m; b) and

17 tomos means \section" in Greek
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vice versa. There's a catch here, however | vertical lines (lines x = constant, in�nite slope) are left out
of this description.

Another approach, one that allows us to describeall lines and that is well suited for the function of L ,
above, goes as follows. First, a linethrough the origin is determined by its unit normal vector n . Now,
n and � n determine the same line, so we represent all the (distinct) normal vectors as (cos�; sin � ) for
an angle � satisfying 0 � � < � , measured counterclockwise from thex1-axis. In other words, there is
a one-to-one correspondence between the� 's with 0 � � < � and the collection of all lines through the
origin.

A line not through the origin can then be described by its unit normal vector together with the directed
distance of the line from the origin, a positive number if measured in the direction of n and a negative
number if measured in the direction � n . Call this directed distance � . Thus �1 < � < 1 .

The set of pairs (�; � ) provides a parameterization for the set of all lines in the plane. Once again:

� A pair ( �; � ) means, in this context, the unique line with normal vector n = (cos �; sin � ) which is at
a directed distance� from the origin, measured in the direction n if � > 0 and in the direction � n
if � < 0.

Anytime you're confronted with a new coordinate system you should ask yourself what the situation is
when one of the coordinates is �xed and the other is free to vary. In this case, if � is �xed and � varies we
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get a family of parallel lines.

For the other case, when� is �xed, we have to distinguish some cases. The pairs (0; � ) correspond to lines
through the origin. When � is positive and � varies from 0 to � (including 0, excluding � ) we get the
family of lines tangent to the upper semicircle of radius� (including the tangent at ( �; 0) excluding the
tangent at ( � �; 0)). When � < 0 we get lines tangent to the lower semicircle (including thetangent at
(�j � j; 0), excluding the tangent at (j� j; 0)).

Using the coordinates (�; � ) we therefore have atransform of the function � (x1; x2) to a function R� (�; � )
de�ned by

R� (�; � ) =
Z

L (�;� )
� (x1; x2) ds :

This is called the Radon transform of � , introduced by Johann Radon | way back in 1917! The funda-
mental question of tomography can then be stated as:

� Is there an inversion formula for the Radon transform? That is, from knowledge of the valuesR� (�; � )
can we recover� ?
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We've indicated the dependence of the integral on� and � by writing L(�; � ), but we want to use the
coordinate description of lines to write the integral in a still more convenient form. Using the dot product,
the line determined by (�; � ) is the set of points (x1; x2) with

� = x � n = ( x1; x2) � (cos�; sin � ) = x1 cos� + x2 sin � :

or described via the equation

� � x1 cos� � x2 sin � = 0 ; �1 < x 1 < 1 ; �1 < x 2 < 1 :

Now consider the delta function \along the line", that is,

� (� � x1 cos� � x2 sin � )

as a function of x1; x2. This is also called aline impulse and it's an example of the greater variety one has
in de�ning di�erent sorts of � 's in two-dimensions. With some interpretation and argument (done in those
notes) one can show that integrating a function f (x1; x2) against the line impulse associated with a line
L results precisely in the line integral of f along L . This is all we'll need here, and with that the Radon
transform of � (x1; x2) can be expressed as

R(� )( �; � ) =
Z 1

�1

Z 1

�1
� (x1; x2)� (� � x1 cos� � x2 sin � ) dx1 dx2 :

This is the form we'll most often work with. One also sees the Radon transform written as

R(� )( �; n ) =
Z

R 2
� (x )� (� � x � n ) dx :

This expression suggests generalizations to higher dimensions | interesting, but we won't pursue them.

Projections It's often convenient to work with R(� )( �; � ) by �rst �xing � and letting � vary. Then we're
looking at parallel lines passing through the domain of� , all perpendicular to a particular line making
an angle � with the x1-axis (that line is the common normal to the parallel lines), and we compute the
integral of � along these lines.

This collection of values, R(� )( �; � ) with � �xed, is often referred to as a projection of � , the idea being
that the line integrals over parallel lines at a �xed angle are giving some kind of pro�le, or projection, of
� in that direction. 18 Then varying � gives us a family of projections, and one speaks of the inversion
problem as \determining � (x1; x2) from its projections".

This is especially apt terminology for the medical applications, since that's how a scan is made:

1. Fix an angle and send in a bunch of parallel X-rays at that angle.

2. Change the angle and repeat.

8.9 Getting to Know Your Radon Transform

We want to develop a few properties of the Radon transform, just enough to get some sense of how to work
with it. First, a few comments on what kinds of functions � (x1; x2) one wants to use; it's interesting but
we won't make an issue of it.

18 Important: Don't be fooled by the term \projection". You are not geometrically projecting the shape of the two-
dimensional cross section (that the lines are cutting throu gh). You are looking at the attenuated, parallel X-rays that emerge
as we move a source along a line. The line is at some angle relative to a reference axis.
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Inspired by honest medical applications, we wouldnot want to require that the cross-sectional density
� (x1; x2) be smooth, or even continuous. Jump discontinuities in� (x1; x2) correspond naturally to a change
from bone to muscle,etc. Although, mathematically speaking, the lines extend in�n itely, in practice the
paths are �nite. In fact, the easiest thing is just to assume that � (x1; x2) is zero outside of some region |
it's describing the density of a slice of a �nite extent body, after all.

Examples There aren't too many cases where one can compute the Radon transform explicitly. One
example is the circ function, expressed in polar coordinates as

circ(r ) =

(
1 r � 1

0 r > 1

We have to integrate the circ function along any line. Think in terms of projections, as de�ned above.
From the circular symmetry, it's clear that the projections are independent of� .

Because of this we can take any convenient value of� , say � = 0, and �nd the integrals over the parallel
lines in this family. The circ function is 0 outside the unit c ircle, so we need only to �nd the integral (of
the function 1) over any chord of the unit circle parallel to t he x2-axis. This is easy. If the chord is at a
distance � from the origin, j� j � 1, then

R(1)( �; 0) =
Z p

1 � � 2

�
p

1 � � 2

1dx2 = 2
p

1 � � 2 :
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Thus for any (�; � ),

R circ(�; � ) =

(
2
p

1 � � 2 j� j � 1

0 j� j > 1

Gaussians again Another example where we can compute the Radon transform exactly is for a Gaussian:

g(x1; x2) = e� � (x2
1+ x2

2) :

Any guesses as to whatRg is? Let's do it.

Using the representation in terms of the line impulse we can write

Rg(�; � ) =
Z 1

�1

Z 1

�1
e� � (x2

1+ x2
2) � (� � x1 cos� � x2 sin � ) dx1 dx2 :

We now make a change of variables in this integral, putting

u1 = x1 cos� + x2 sin �;

u2 = � x1 sin � + x2 cos�:

This is a rotation of coordinates through an angle� , making the u1-axis correspond to thex1-axis. The
Jacobian of the transformation is 1, and we also �nd that

u2
1 + u2

2 = x2
1 + x2

2 :
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In the new coordinates the integral becomes:

Rg(�; � ) =
Z 1

�1

Z 1

�1
e� � (u2

1+ u2
2 ) � (� � u1) du1du2

=
Z 1

�1

� Z 1

�1
e� �u 2

1 � (� � u1) du1

�
e� �u 2

2 du2

=
Z 1

�1
e� �� 2

e� �u 2
2 du2 (by the sifting property of � )

= e� �� 2
Z 1

�1
e� �u 2

2 du2

= e� �� 2
(because the Gaussian is normalized to have area 1)

Writing this in polar coordinates, r = x2
1 + x2

2, we have shown that

R(e� �r 2
) = e� �� 2

:

How about that.

Linearity, Shifts, and Evenness We need a few general properties of the Radon transform.

Linearity: R(�f + �g ) = � R(f ) + � R(g). This holds because integration is a linear function of the
integrand.
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Shifts: This is a little easier to write (and to derive) in vector form . Let n = (cos �; sin � ). The result is

R(� (x � b )) = ( R � )( � � b � n ; � )

In words: shifting x by b has the e�ect of shifting each projection a distanceb � n in the � -variable.

To derive this we write the de�nition as

R(� (x � b )) =
Z

R 2
� (x � b )� (� � x � n ) dx

If b = ( b1; b2) then the change of variable u1 = x1 � b1 and u2 = x2 � b2, or simply u = x � b with
u = ( u1; u2), converts this integral into

R(� (x � b )) =
Z

R 2
� (u )� (� � (u + b) � n ) du

=
Z

R 2
� (u )� (� � u � n � b � n )) du

= ( R � )( � � b � n ; � )

Evenness: Finally, the Radon transform always has a certain symmetry | it is always an even function
of � and � . This means that

R � (� �; � + � ) = R� (�; � ) :

Convince yourself that this makes sense in terms of the projections. The derivation goes:

R � (� �; � + � ) =
Z 1

�1

Z 1

�1
� (x1; x2)� (� � � x1 cos(� + � ) � x2 sin(� + � )) dx1 dx2

=
Z 1

�1

Z 1

�1
� (x1; x2)� (� � � x1(� cos� ) � x2(� sin � )) dx1 dx2

=
Z 1

�1

Z 1

�1
� (x1; x2)� (� � + x1 cos� + x2 sin � ) dx1 dx2

=
Z 1

�1

Z 1

�1
� (x1; x2)� (� � x1 cos� � x2 sin � ) dx1 dx2 (because� is even)

= R� (�; � )

8.10 Appendix: Clarity of Glass

Here's a chart showing how the clarity of glass has improved over the ages, with some poetic license in
estimating the clarity of the windows of ancient Egypt. Note that on the vertical axis on the left the tick
marks are powers of 10 but the units are in decibels | which already involve taking a logarithm! The big
jump in clarity going to optical �bers was achieved largely by eliminating water in the glass.
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8.11 Medical Imaging: Inverting the Radon Transform

Let's recall the setup for tomography. We have a two-dimensional region (a slice of a body) and a density
function � (x1; x2) de�ned on the region. The Radon transform of � is obtained by integrating � along
lines that cut across the region. We write this as

R� (�; � ) =
Z 1

�1

Z 1

�1
� (x1; x2)� (� � x1 cos� � x2 sin � ) dx1 dx2 :

Here (�; � ) are coordinates that specify a line;� (0 � � < � ) is the angle thenormal to the line makes with
the x1-axis and� (�1 < � < 1 ) is the directed distance of the line from the origin. � (� � x1 cos� � x2 sin � )
is a line impulse, a� -function along the line whose (Cartesian) equation is� � x1 cos� � x2 sin � = 0.

If we �x � and vary � , then R� (�; � ) is a collection of integrals along parallel lines through the region, all
making the same angle,� + �= 2, with a reference axis, thex1-axis. This set of values is referred to as a
projection of � . Thus one often speaks of the Radon transform as a collectionof projections parameterized
by an angle � .

In practice � (x1; x2) is unknown, and what is available are the valuesR� (�; � ). These values (or rather
a constant times the exponential of these values) are what your detector registers when an X-ray reaches
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it having gone through the region and having been attenuatedaccording to its encounter with � (x1; x2).
The problem is to reconstruct � (x1; x2) from these meter readings, in other words to invert the Radon
transform.

Among those who use these techniques,� (x1; x2) is often referred to simply as animage. In that termi-
nology the problem is then \to reconstruct the image from its projections".

The Projection-Slice Theorem The inversion problem is solved by a result that relates thetwo-
dimensional Fourier transform of � to a one-dimensional Fourier transform of R(� ), taken with respect
to � . Once F � is known, � can be found by Fourier inversion.

The formulation of this relation between the Fourier transforms of an image and its projections is called
the Projection-Slice Theorem19 and is the cornerstone of tomography. We'll go through the derivation,
but it must be said at once that, for practical applications, all of this has to be implementednumerically,
i.e., with the DFT (and the FFT). Much of the early work in Comp uter Assisted Tomography (CAT)
was in �nding e�cient algorithms for doing just this. An impo rtant issue are the errors introduced by
approximating the transforms, termed artifacts when the reconstructed image� (x1; x2) is drawn on a
screen. We won't have time to discuss this aspect of the problem.

Starting with

R� (�; � ) =
Z 1

�1

Z 1

�1
� (x1; x2)� (� � x1 cos� � x2 sin � ) dx1 dx2 ;

what is its Fourier transform with respect to � , regarding � as �xed? For lack of a better notation, we
write this as F � (R(� )). Calling the frequency variable r | dual to � | we then have

F � R(� )( r; � ) =
Z 1

�1
e� 2�ir� R� (�; � ) d�

=
Z 1

�1
e� 2�ir�

Z 1

�1

Z 1

�1
� (x1; x2)� (� � x1 cos� � x2 sin � ) dx1 dx2 d�

=
Z 1

�1

Z 1

�1
� (x1; x2)

� Z 1

�1
� (� � x1 cos� � x2 sin � )e� 2�ir� d�

�
dx1 dx2

=
Z 1

�1

Z 1

�1
� (x1; x2)e� 2�ir (x1 cos� + x2 sin � ) dx1 dx2

=
Z 1

�1

Z 1

�1
� (x1; x2)e� 2�i (x1 r cos� + x2r sin � ) dx1 dx2

Check out what happened here: By interchanging the order of integration we wind up integrating the line
impulse against the complex exponentiale� 2�ir� . For that integration we can regard � (� � x1 cos� � x2 sin � )
as a shifted� -function, and the integration with respect to � producese� 2�i (x1 r cos� + x2r sin � ) . Now if we let

� 1 = r cos�

� 2 = r sin �

the remaining double integral is
Z 1

�1

Z 1

�1
e� 2�i (x1 � 1+ x2 � 2) � (x1; x2) dx1 dx2 =

Z

R 2
e� 2�i x �� � (x ) dx :

19 Also called the Central Slice Theorem, or the Center Slice th eorem.
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This is the two-dimensional Fourier transform of � .

We have shown

� The Projection-Slice Theorem:

F � R(� )( r; � ) = F � (� 1; � 2); � 1 = r cos�; � 2 = r sin � :

Observe that

r 2 = � 2
1 + � 2

2 and tan � =
� 2

� 1
:

This means that (r; � ) are polar coordinates for the (� 1; � 2)-frequency plane. As� varies between 0 and�
(including 0, excluding � ) and r between �1 and 1 we get all the points in the plane.

Reconstructing the image That last derivation happened pretty fast. Let's unpack the steps in using
the projection-slice theorem to reconstruct an image from its projections.

1. We have a source and a sensor that rotate about some center.The angle of rotation is � , where
0 � � < � .

2. A family of parallel X-rays pass from the source through a (planar) region of unknown, variable
density, � (x1; x2), and are registered by the sensor.

For each � the readings at the meter thus give a functiong� (� ) (or g(�; � )), where � is the (directed)
distance that a particular X-ray is from the center of the beam of parallel X-rays.

Each such function g� , for di�erent � 's, is called a projection.

3. For each � we computeF g� (r ), i.e., the Fourier transform of g� (� ) with respect to � .

4. Sinceg� (� ) also depends on� so does its Fourier transform. Thus we have a function of two variables,
G(r; � ), the Fourier transform of g� (� ). The projection-slice theorem tells us that this is the Fourier
transform of � :

F � (� 1; � 2) = G(r; � ); where � 1 = r cos�; � 2 = r sin � :

Thus (F � )( � 1; � 2) is known.

5. Now take the inverse two-dimensional Fourier transform to recover � :

� (x ) =
Z

R 2
e2�i x �� F � (� ) d� :

Running the numbers Very brie
y, let's go through how one might set up a numerical implementation
of the procedure we've just been through. The function that we know is g(�; � ) | that's what the sensor
gives us, at least in discrete form. To normalize things we suppose that g(�; � ) is zero for j� j � 1. This
means, e�ectively, that the region we're passing rays through is contained within the circle of radius one
| the region is bounded so we can assume that it lies within some disk, so we scale to assume the the
region lies within the unit disk.
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Suppose we haveM equal angles,� j = j�=M , for j = 0 ; : : : ; M � 1. Suppose next that for each angle we
send through N X-rays. We're assuming that � 1 � � � 1, so the rays are spaced �� = 2=N apart and we
index them to be

� n =
2n
N

; n = �
N
2

; : : : ;
N
2

� 1 :

Then our projection data are the MN values

gnj = g(� n ; � j ) ; j = 0 ; : : : ; M � 1; n = �
N
2

; : : : ;
N
2

� 1 :

The �rst step in applying the projection slice theorem is to � nd the one-dimensional Fourier transform of
g(�; � j ) with respect to � , which, since the function is zero forj� j � 1, is the integral

F g(r; � j ) =
Z 1

� 1
e� 2�ir� g(�; � j ) d� :

We have to approximate and discretize the integral. One approach to this is very much like the one we
took in obtaining the DFT (Chapter 6). First, we're integrat ing with respect to � , and we already have
sample points at the � n = 2n=N ; evaluating g at those points gives exactlygnj = g(� n ; � j ). We'll use these
for a trapezoidal rule approximation.

We also have to discretize inr , the \frequency variable" dual to � . According to the sampling theorem, if
we want to reconstruct F g(r; � j ) from its samples in r the sampling rate is determined by the extent of
g(�; � j ) in the spatial domain, where the variable � is limited to � 1 � � � 1. So the sampling rate inr
is 2 and the sample points are spaced 1/2 apart:

rm =
m
2

; m = �
N
2

; : : : ;
N
2

� 1 :

The result of the trapezoidal approximation using � n = 2n=N and of discretizing in r using rm = m=2 is

F g(rm ; � j ) �
2
N

N=2X

n= � N=2+1

e� 2�i� n r m gnj

=
2
N

N=2X

n= � N=2+1

e� 2�inm=N gnj :

(The 2 in 2=N comes in from the form of the trapezoidal rule.) Up to the constant out front, this is a DFT
of the sequence (gnj ), n = � N=2 + 1; : : : ; N=2. (Here n is varying, while j indexes the projection.) That
is,

F g(rm ; � j ) �
2
N

F (gnj )[m] :

Computing this DFT for each of the M projections � j (j = 0 ; : : : ; M � 1) gives the dataF g(rm ; � j ). Call
this

Gmj = F (gnj )[m] :

The next step is to take the two-dimensional inverse Fourier transform of the data Gmj . Now there's an
interesting problem that comes up in implementing this e�ci ently. The Gmj are presented as data points
based on apolar coordinate grid in the frequency domain:
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The vertices in this picture are the points (rm ; � j ) and that's where the data points Gmj live. However,
e�cient FFT algorithms depend on the data being presented on a Cartesian grid. One way this is often
done is to manufacture data at Cartesian grid points by taking a weighted average of theGmj at the polar
grid points which are nearest neighbors:

GCartesian = waGa + wbGb + wcGc + wdGd :

Choosing the weighting factorswa, wb, wc and wc is part of the art, but the most signi�cant introductions
of error in the whole process come from this step.

The �nal picture is then created by

� (grid points in spatial domain) = F � 1(GCartesian ) :
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This is your brain. This is your brain on Fourier transforms Here are some pictures of a Fourier
reconstruction of a model brain.20. The \brain" is modeled by a high density elliptical shell (t he skull)
with lower density elliptical regions inside.

It's possible to compute explicity the Radon transform for lines going through an elliptical region, so the
sampling can be carried out based on these formulas. There are 64 projections (64� j 's) each sampled at 64
points (64 � n 's) in the interval [ � 1; 1]. Here's the plot of the values of the projections (the Radon transforms
along the lines). As in pictures of the (Fourier) spectrum of images, the values here are represented via
shading; white represents large values and black represents small values. The horizontal axis is� and the
vertical is � .

20 See the paper: L A. Shepp and B. F. Logan, The Fourier reconstruction of a head section, IEEE Trans. Nucl. Sci. , NS-21
(1974) 21{43.
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And here is the reconstructed brain.


